找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algebra and Related Topics with Applications; ICARTA-2019, Aligarh Mohammad Ashraf,Asma Ali,Vincenzo De Filippis Conference proceedings 202

[复制链接]
楼主: 忠诚
发表于 2025-3-28 18:04:16 | 显示全部楼层
Exploration of Small Solar System Bodies,2006). It describes the initial investigations in this field and covers roughly the period from 1995 to 2005. The present report is an update of this survey and tries to explain relevant developments after 2005.
发表于 2025-3-28 19:26:39 | 显示全部楼层
发表于 2025-3-29 00:18:39 | 显示全部楼层
发表于 2025-3-29 06:34:51 | 显示全部楼层
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/a/image/152493.jpg
发表于 2025-3-29 10:04:37 | 显示全部楼层
Quantum Effects on the Davydov Solitont is shown that under certain conditions every multiplicative Jordan generalized .-derivation on . is additive. As a consequence, multiplicative Jordan generalized derivations on triangular algebras are characterized.
发表于 2025-3-29 12:08:52 | 显示全部楼层
Vibron Solitons: A Semiclassical Approache of . The question that we ask is this: Does there exist a matrix . such that . is a defective eigenvalue of . and . If such a defective matrix . exists, then we refer to . as an approximate defective eigenvalue of .. The aim of this paper is to characterize approximate defective eigenvalues. We sh
发表于 2025-3-29 16:29:54 | 显示全部楼层
Fabio Guarracino,Rubia Baldassarriation . satisfying either of the conditions: (i) ., (ii) ., (iii) ., (iv) ., (v) . and (vi) . for all ., where . is a nonzero semigroup ideal of ., . is a map such that . and ., . are non-negative integers. Moreover, we give a characterization of these mappings.
发表于 2025-3-29 20:27:41 | 显示全部楼层
发表于 2025-3-30 01:08:50 | 显示全部楼层
发表于 2025-3-30 07:46:29 | 显示全部楼层
Fabio Guarracino,Rubia Baldassarri, associated with the same automorphism . and commuting with .. In this work we describe all possible forms of . and . in the following two cases: (a) there exist . and a non-central Lie ideal . of . such that ., for all .; (b) there exist . such that ., for all ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 00:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表