找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Visual Computing; 13th International S George Bebis,Richard Boyle,Jonathan Ventura Conference proceedings 2018 Springer Nature

[复制链接]
查看: 53476|回复: 54
发表于 2025-3-21 16:32:50 | 显示全部楼层 |阅读模式
期刊全称Advances in Visual Computing
期刊简称13th International S
影响因子2023George Bebis,Richard Boyle,Jonathan Ventura
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Advances in Visual Computing; 13th International S George Bebis,Richard Boyle,Jonathan Ventura Conference proceedings 2018 Springer Nature
影响因子.This book constitutes the refereed proceedings of the 13th International Symposium on Visual Computing, ISVC 2018, held in Las Vegas, NV, USA in November 2018...The total of 66 papers presented in this volume was carefully reviewed and selected from 91 submissions. The papers are organized in topical sections named: ST: computational bioimaging; computer graphics; visual surveillance; pattern recognition; vitrual reality; deep learning; motion and tracking; visualization; object detection and recognition; applications; segmentation; and ST: intelligent transportation systems. .
Pindex Conference proceedings 2018
The information of publication is updating

书目名称Advances in Visual Computing影响因子(影响力)




书目名称Advances in Visual Computing影响因子(影响力)学科排名




书目名称Advances in Visual Computing网络公开度




书目名称Advances in Visual Computing网络公开度学科排名




书目名称Advances in Visual Computing被引频次




书目名称Advances in Visual Computing被引频次学科排名




书目名称Advances in Visual Computing年度引用




书目名称Advances in Visual Computing年度引用学科排名




书目名称Advances in Visual Computing读者反馈




书目名称Advances in Visual Computing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:17:13 | 显示全部楼层
发表于 2025-3-22 01:05:39 | 显示全部楼层
发表于 2025-3-22 08:28:11 | 显示全部楼层
Robust Incremental Hidden Conditional Random Fields for Human Action Recognitiona robust mixture of Student’s .-distributions is imposed as a regularizer to the parameters of the model. The experimental results on human action recognition show that RI-HCRF successfully estimates the number of hidden states and outperforms all state-of-the-art models.
发表于 2025-3-22 10:08:30 | 显示全部楼层
Conservation and the Common Good,ety of automatic registration methods, and evaluate algorithm performance in the context of serial image registration. We find that intensity-based methods are consistent in performance, while feature-based methods can perform better, but are also more variable in success. Ultimately a combined algo
发表于 2025-3-22 14:50:37 | 显示全部楼层
Rare and Endangered Plants in Chinauomotor control of its eyes, head, and four limbs to perform tasks involving the foveation and visual pursuit of target objects coupled with visually-guided reaching actions to intercept the moving targets.
发表于 2025-3-22 20:58:32 | 显示全部楼层
Cristiana Nunes,Paulina Faria,Nuno Garciastage, which outperforms state-of-the-art results concerning the trade-off between accuracy and dimensionality of the final video representation. Also, the relevance analysis allows to increase the video data interpretability, by ranking trajectory-aligned descriptors according to their importance t
发表于 2025-3-22 21:54:10 | 显示全部楼层
Cristiana Nunes,Paulina Faria,Nuno Garciaa robust mixture of Student’s .-distributions is imposed as a regularizer to the parameters of the model. The experimental results on human action recognition show that RI-HCRF successfully estimates the number of hidden states and outperforms all state-of-the-art models.
发表于 2025-3-23 03:54:11 | 显示全部楼层
Rotation Symmetry Object Classification Using Structure Constrained Convolutional Neural Network: rotation invariant convolution (RI-CONV) layer and symmetry structure constrained convolution (SSC-CONV) layer. Proposed network learns structural characteristic from image samples regardless of their appearance diversity. Evaluation is conducted on 32,000 images (after augmentation) of our rotation symmetry classification data set.
发表于 2025-3-23 07:58:34 | 显示全部楼层
A Hough Space Feature for Vehicle Detection angle. To evaluate the performance of the proposed feature, a Neural Network pattern recognition classifier is employed to classify vehicle images and non-vehicle samples. The success rate is validated via various imaging environment (lighting, distance to camera, view angle, and incompleteness) for different vehicle models.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 08:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表