找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Self-Organizing Maps and Learning Vector Quantization; Proceedings of the 1 Thomas Villmann,Frank-Michael Schleif,Mandy Lange C

[复制链接]
楼主: 水平
发表于 2025-3-30 09:24:56 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-4371-8eural Gas require the use of distance metrics to measure the similarities between feature vectors as well as class prototypes. While the Euclidean distance is used in many cases, the highly correlated features within the hyperspectral representation and the high dimensionality itself favor the use o
发表于 2025-3-30 15:34:30 | 显示全部楼层
Advances in Self-Organizing Maps and Learning Vector Quantization978-3-319-07695-9Series ISSN 2194-5357 Series E-ISSN 2194-5365
发表于 2025-3-30 20:26:24 | 显示全部楼层
https://doi.org/10.1007/978-3-642-18012-5ectorial class labelings for the training data and the prototypes. It employs t-norms, known from fuzzy learning and fuzzy set theory, in the class label assignments, leading to a more flexible model with respect to domain requirements. We present experiments to demonstrate the extended algorithm in practice.
发表于 2025-3-30 21:08:23 | 显示全部楼层
发表于 2025-3-31 01:59:14 | 显示全部楼层
发表于 2025-3-31 05:15:36 | 显示全部楼层
发表于 2025-3-31 10:02:07 | 显示全部楼层
发表于 2025-3-31 14:11:57 | 显示全部楼层
Probabilistic Prototype Classification Using t-normsectorial class labelings for the training data and the prototypes. It employs t-norms, known from fuzzy learning and fuzzy set theory, in the class label assignments, leading to a more flexible model with respect to domain requirements. We present experiments to demonstrate the extended algorithm in practice.
发表于 2025-3-31 18:41:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 11:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表