找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Mathematical Systems Theory; A Volume in Honor of Fritz Colonius,Uwe Helmke,Fabian Wirth Book 2001 Springer Science+Business Me

[复制链接]
楼主: Clinical-Trial
发表于 2025-3-23 11:14:04 | 显示全部楼层
发表于 2025-3-23 17:24:00 | 显示全部楼层
发表于 2025-3-23 20:53:47 | 显示全部楼层
发表于 2025-3-24 01:03:52 | 显示全部楼层
User Modelling in Knowledge-Based Systems,oints and irreducible elements, respectively, if some marking is employed. Geometrically, this yields a particular simplicial subdivision of convex sets and monoids, respectively. Applied to the topic of joint production from economics the famous Nonsubstitution Theorem is generalized to a Substitution Theorem.
发表于 2025-3-24 02:55:20 | 显示全部楼层
https://doi.org/10.1007/978-3-642-03208-0t formulas are given for the normalized left-and right­coprime factors. With this result, the theory of robust stabilization with re­spect to normalized coprime factor perturbations can be generalized to this class of systems. An application to models of hybrid flexible structures is given.
发表于 2025-3-24 07:06:39 | 显示全部楼层
https://doi.org/10.1007/978-3-030-03565-5ust domain of attraction for the fixed point of a perturbed system under the assumption that the perturbations do not destroy exponential stability. We discuss some topological properties of the robust domain of attraction and present an approximation scheme for its determination.
发表于 2025-3-24 12:46:14 | 显示全部楼层
发表于 2025-3-24 15:55:22 | 显示全部楼层
https://doi.org/10.1007/978-3-642-03208-0igenvectors of A and the control operator b. Also necessary conditions are included. A necessary condition is that one over the eigenvalues is a sequence in ..,ɛ > 0. If additionally A is a diagonal operator then we prove that the conjecture of Russell and Weiss[.] holds.
发表于 2025-3-24 19:39:20 | 显示全部楼层
发表于 2025-3-25 02:10:58 | 显示全部楼层
Cognition, Rationality, and InstitutionsWe prove that for linear time-invariant differential systems the state consists of the functionals of the system variables that evolve continuously in time.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 06:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表