找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Cryptology -- ASIACRYPT 2013; 19th International C Kazue Sako,Palash Sarkar Conference proceedings 2013 International Associati

[复制链接]
楼主: injurious
发表于 2025-3-30 11:16:25 | 显示全部楼层
Cancer of the Prostate and Kidneyhe output. The state of the art in RKA security protects against an a-priori unbounded number of certain algebraic induced key relations, e.g., affine functions or polynomials of bounded degree. In this work, we show that it is possible to go beyond the algebraic barrier and achieve security against
发表于 2025-3-30 12:25:14 | 显示全部楼层
发表于 2025-3-30 17:43:04 | 显示全部楼层
发表于 2025-3-30 22:45:30 | 显示全部楼层
发表于 2025-3-31 04:37:05 | 显示全部楼层
发表于 2025-3-31 06:30:24 | 显示全部楼层
Treatment of Nonseminoma: Stage In (with long messages) to obtain lossy trapdoor functions, and hence injective one-way trapdoor functions..Bellare, Halevi, Sahai and Vadhan (CRYPTO ’98) showed that if . is an IND-CPA secure cryptosystem, and . is a random oracle, then . ↦ .(.,.(.)) is an injective trapdoor function. In this work,
发表于 2025-3-31 10:56:46 | 显示全部楼层
https://doi.org/10.1007/978-1-84800-370-5uire the knowledge about ., but the dependency can be removed while keeping nearly the same parameters. In the latter case, we get a construction of pseudo-random generator from any unknown-regular one-way function using seed length . and . calls, where . omits a factor that can be made arbitrarily
发表于 2025-3-31 16:39:53 | 显示全部楼层
https://doi.org/10.1007/978-1-84800-370-5function at all points in the domain of the function. In a PRF it is possible to derive constrained keys .. from the master key .. A constrained key .. enables the evaluation of the PRF at a certain subset . of the domain and nowhere else. We present a formal framework for this concept and show that
发表于 2025-3-31 20:08:22 | 显示全部楼层
发表于 2025-4-1 01:23:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 19:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表