找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advances in Analysis and Geometry; New Developments Usi Tao Qian,Thomas Hempfling,Frank Sommen Book 2004 Springer Basel AG 2004 Algebra.Cli

[复制链接]
楼主: crusade
发表于 2025-3-25 03:41:14 | 显示全部楼层
Miscellaneous aspects of modelling,hall introduce a Cauchy kernel, Cauchy integral formula for sections taking values in a spinor bundle and annihilated by a Dirac operator, or generalized Cauchy-Riemann operator. Basic properties of this kernel are examined. We also introduce a Green’s kernel and a Green’s formula for harmonic sections in this context.
发表于 2025-3-25 09:58:44 | 显示全部楼层
发表于 2025-3-25 14:45:32 | 显示全部楼层
发表于 2025-3-25 19:13:46 | 显示全部楼层
发表于 2025-3-25 22:22:57 | 显示全部楼层
Examples related to Brownian motion,cients. Rothe’s time discretization method is used to reduce the problem to a series of stationary problems. Solving the resulting stationary problems by means of quaternionic analysis we obtain integral representation formulas for the solution of the Galpern-Sobolev equation. The truncation error and the stability of the method is studied, too.
发表于 2025-3-26 03:52:49 | 显示全部楼层
Miscellaneous aspects of modelling,Our goal is to generalize results for analytic functions of bounded mean oscillation (BMOA) in the unit circle to monogenic functions of bounded mean oscillation (BMOM) in the unit ball of.In particular we obtain the duality of BMOM. and the Hardy space of right monogenic functions ..... Primary 30G35; Secondary 31B10, 32A37.
发表于 2025-3-26 05:02:52 | 显示全部楼层
https://doi.org/10.1007/978-1-84628-616-2The aim of this work is to characterize hyperholomorphic ..-functions in terms of harmonic majorants. In addition we point out how some important relations between .., Bloch and ..-spaces can be expressed in terms of their corresponding harmonic majorants.
发表于 2025-3-26 09:48:46 | 显示全部楼层
发表于 2025-3-26 13:39:47 | 显示全部楼层
发表于 2025-3-26 19:40:00 | 显示全部楼层
Universal Bochner-Weitzenböck Formulas for Hyper-Kählerian Gradients978-3-658-29951-4
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 00:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表