找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Data Mining and Applications; 7th International Co Jie Tang,Irwin King,Jianyong Wang Conference proceedings 2011 Springer-Verlag G

[复制链接]
楼主: peak-flow-meter
发表于 2025-3-26 22:40:56 | 显示全部楼层
Kommentierte Auswahlbibliographie, methods that have been developed to solve these classification problems are neural network (NN) and support vector machine (SVM) classifiers. Despite their successful application to classification problems, these classifiers are limited, in that users must use trial-and error to modify specific par
发表于 2025-3-27 04:26:34 | 显示全部楼层
发表于 2025-3-27 06:31:11 | 显示全部楼层
发表于 2025-3-27 11:21:33 | 显示全部楼层
,Bernhard von Gudden in Werneck (1855–1869),te its neighbors. We propose an influence diffusion model called multiple spread model, in which an active node has many activation chances. We prove that influence maximizing problem with the proposed model is submodular and monotone, which means greedy algorithm provides (1-1/e) approximation to o
发表于 2025-3-27 14:17:17 | 显示全部楼层
发表于 2025-3-27 21:39:47 | 显示全部楼层
发表于 2025-3-27 23:13:14 | 显示全部楼层
https://doi.org/10.1007/978-3-540-39721-2ant task in many social networking sites. Traditional content-based and collaborative filtering methods are not sufficient for people-to-people recommendation because a good match depends on the preferences of . sides. We proposed a framework for social recommendation and develop a representation fo
发表于 2025-3-28 02:53:32 | 显示全部楼层
,Bernhard von Gudden — Der Lebenslauf —,re and content of microgroup (community) on TSina in detail, we reveal that different from ordinary social networks, the degree assortativity coefficients are negative on most microgroups. In addition, we find that users from the same microgroup likely exhibit some similar attributes (e.g., sharing
发表于 2025-3-28 08:43:41 | 显示全部楼层
发表于 2025-3-28 11:01:30 | 显示全部楼层
Martin Huber,Manfred Mittermayerropose the use of tree pattern mining techniques to discover potentially interesting patterns within longitudinal data sets. Following the approach described in [15], we propose four different representation schemes for longitudinal studies and we analyze the kinds of patterns that can be identified
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 00:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表