找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Advanced Data Mining and Applications; 14th International C Guojun Gan,Bohan Li,Shuliang Wang Conference proceedings 2018 Springer Nature S

[复制链接]
楼主: 频率
发表于 2025-3-25 04:15:40 | 显示全部楼层
Berichte zur Lebensmittelsicherheit 2014oit possibilistic networks (PN) and a multi-terminology in order to extract and disambiguate terms and then to retrieve documents. The two measures of possibility and necessity were used to select the relevant concept of an ambiguous term. Thus, the user query and unstructured documents are describe
发表于 2025-3-25 10:18:14 | 显示全部楼层
发表于 2025-3-25 13:09:34 | 显示全部楼层
Berichte zur Lebensmittelsicherheit 2014o identify outliers embedded in subspaces. The existing technique, mainly using genetic algorithm (GA) to carry out the subspace search, is generally slow due to its expensive fitness evaluation and long solution encoding scheme. In this paper, we propose a novel technique to improve the performance
发表于 2025-3-25 19:00:31 | 显示全部楼层
Berichte zur Lebensmittelsicherheit 2014or steady-state visual evoked potentials (SSVEPs) frequency recognition is proposed in this paper to enhance the performance of SSVEP-based brain-computer interface (BCI). As a type of electroencephalogram (EEG) signals, SSVEPs generated from underlying brain sources is different from other activiti
发表于 2025-3-25 23:54:57 | 显示全部楼层
发表于 2025-3-26 02:42:38 | 显示全部楼层
Berichte zur Resistenzmonitoringstudie 2009 not be suitable for the detecting image and the transform matrix fails to combine the low-level features of the image. In this paper, we propose a novel salient object detection model that combines sparse and low-rank matrix recovery (SLRR) with the adaptive background template. Our SLRR model usin
发表于 2025-3-26 05:06:05 | 显示全部楼层
Berichte zur Resistenzmonitoringstudie 2009any indication. In order to solve this problem, a new SDC vulnerability prediction method based on deep learning model is proposed. Our method predicts the SDC vulnerability of each instruction in the program based on the inherent and dependent features of each instruction in the Lower Level Virtual
发表于 2025-3-26 09:50:32 | 显示全部楼层
发表于 2025-3-26 15:27:03 | 显示全部楼层
发表于 2025-3-26 18:03:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 07:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表