找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Accelerating Discoveries in Data Science and Artificial Intelligence I; ICDSAI 2023, LIET Vi Frank M. Lin,Ashokkumar Patel,Bosubabu Sambana

[复制链接]
查看: 24639|回复: 59
发表于 2025-3-21 19:01:32 | 显示全部楼层 |阅读模式
期刊全称Accelerating Discoveries in Data Science and Artificial Intelligence I
期刊简称ICDSAI 2023, LIET Vi
影响因子2023Frank M. Lin,Ashokkumar Patel,Bosubabu Sambana
视频video
发行地址Discusses mathematically deep enough algorithms of data science to solve the real world problems.Explains the students AI techniques for several aspects of programming, sorting, pattern matching etc.A
学科分类Springer Proceedings in Mathematics & Statistics
图书封面Titlebook: Accelerating Discoveries in Data Science and Artificial Intelligence I; ICDSAI 2023, LIET Vi Frank M. Lin,Ashokkumar Patel,Bosubabu Sambana
影响因子.The Volume 1 book on Accelerating Discoveries in Data Science and Artificial Intelligence (Proceedings of ICDSAI 2023), that was held on April 24-25, 2023 by CSUSB USA, the International Association of Academicians (IAASSE), and the Lendi Institute of Engineering and Technology, Vizianagaram, India is intended to be used as a reference book for researchers and practitioners in the disciplines of AI and data science. The book introduces key topics and algorithms and explains how these contribute to healthcare, manufacturing, law, finance, retail, real estate, accounting, digital marketing, and various other fields. The book is primarily meant for academics, researchers, and engineers who want to employ data science techniques and AI applications to address real-world issues. Besides that, businesses and technology creators will also find it appealing to use in industry..
Pindex Conference proceedings 2024
The information of publication is updating

书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I影响因子(影响力)




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I影响因子(影响力)学科排名




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I网络公开度




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I网络公开度学科排名




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I被引频次




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I被引频次学科排名




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I年度引用




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I年度引用学科排名




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I读者反馈




书目名称Accelerating Discoveries in Data Science and Artificial Intelligence I读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:32:47 | 显示全部楼层
发表于 2025-3-22 01:58:54 | 显示全部楼层
发表于 2025-3-22 05:38:51 | 显示全部楼层
发表于 2025-3-22 12:42:07 | 显示全部楼层
发表于 2025-3-22 13:52:51 | 显示全部楼层
发表于 2025-3-22 19:10:49 | 显示全部楼层
https://doi.org/10.1007/978-3-030-77896-5 necessity designing cycle. The list suggests a moderate improvement for aiding exercises in necessity designing in a global programming advancement worldview. This work is very beneficial for those with less experience working in global programming advancement.
发表于 2025-3-22 21:40:42 | 显示全部楼层
https://doi.org/10.1007/978-3-642-97696-4ID and WOA-PIDA control schemes were matched with recently developed nature-inspired computations. In addition to LPBO-PIPD, AOA-PIPD, and MPSO-PIPD, the suggested control schemes WOA-2DOFPID and WOA-PIDA are clearly more reliable, as evidenced by the comparison of the controllers.
发表于 2025-3-23 04:51:54 | 显示全部楼层
发表于 2025-3-23 08:56:51 | 显示全部楼层
https://doi.org/10.1007/978-3-662-00578-1 that the determination coefficient R has a value close to 1 and the mean square error tends to 0. This confirms the average prediction of the model. For better performance, it is preferable to input more historical data and to combine ANNs with metaheuristic algorithms.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 02:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表