找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Accelerated Optimization for Machine Learning; First-Order Algorith Zhouchen Lin,Huan Li,Cong Fang Book 2020 Springer Nature Singapore Pte

[复制链接]
查看: 22672|回复: 40
发表于 2025-3-21 17:05:55 | 显示全部楼层 |阅读模式
期刊全称Accelerated Optimization for Machine Learning
期刊简称First-Order Algorith
影响因子2023Zhouchen Lin,Huan Li,Cong Fang
视频video
发行地址The first monograph on accelerated first-order optimization algorithms used in machine learning.Includes forewords by Michael I. Jordan, Zongben Xu, and Zhi-Quan Luo, and written by experts on machine
图书封面Titlebook: Accelerated Optimization for Machine Learning; First-Order Algorith Zhouchen Lin,Huan Li,Cong Fang Book 2020 Springer Nature Singapore Pte
影响因子.This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning...Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time..
Pindex Book 2020
The information of publication is updating

书目名称Accelerated Optimization for Machine Learning影响因子(影响力)




书目名称Accelerated Optimization for Machine Learning影响因子(影响力)学科排名




书目名称Accelerated Optimization for Machine Learning网络公开度




书目名称Accelerated Optimization for Machine Learning网络公开度学科排名




书目名称Accelerated Optimization for Machine Learning被引频次




书目名称Accelerated Optimization for Machine Learning被引频次学科排名




书目名称Accelerated Optimization for Machine Learning年度引用




书目名称Accelerated Optimization for Machine Learning年度引用学科排名




书目名称Accelerated Optimization for Machine Learning读者反馈




书目名称Accelerated Optimization for Machine Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:37:59 | 显示全部楼层
Are the Results Robust and Still Valid?, when the high order derivative is Lipschitz continuous. This chapter also provides the smoothing technique for nonsmooth problems, the restart technique for non-strongly convex problems and the explanation of the mechanism of acceleration from the variational perspective.
发表于 2025-3-22 00:25:24 | 显示全部楼层
发表于 2025-3-22 06:11:07 | 显示全部楼层
Alessandro Carretta,Gianluca Mattarocciction and Catalyst. For the nonconvex problems, we introduce a method named SPIDER. For the constrained problems, we introduce the accelerated stochastic ADMM. For the infinite case, we show that the momentum technique can enlarge the mini-batch size.
发表于 2025-3-22 09:47:49 | 显示全部楼层
发表于 2025-3-22 14:11:12 | 显示全部楼层
gben Xu, and Zhi-Quan Luo, and written by experts on machine.This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mai
发表于 2025-3-22 18:20:27 | 显示全部楼层
Gianni Nicolini,Ekaterina Dorodnykhhe centralized topology and decentralized topology. For both topologies, we introduce the communication-efficient accelerated stochastic dual coordinate ascent. Specially, we concentrate on the stochastic variant, where at each iteration only parts of samples are used in each agent.
发表于 2025-3-22 21:29:05 | 显示全部楼层
发表于 2025-3-23 02:58:37 | 显示全部楼层
Accelerated Algorithms for Unconstrained Convex Optimization,des II. Bandes aufgestellten Sätze unmittelbar anzuwenden, weil es sich hier ja um starre Körper handelt. Die so erhaltenen Differentialgleichungen in Verbindung mit den Bedingungsgleichungen der Bewegungen der Verbindung bestimmen sowohl die Koordinaten als Funktionen der Zeit, als auch die inneren
发表于 2025-3-23 08:01:00 | 显示全部楼层
book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time..978-981-15-2912-2978-981-15-2910-8
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 00:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表