找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II; Applications Atsushi Yagi Book 2021 The Author(s), under exclus

[复制链接]
查看: 47930|回复: 36
发表于 2025-3-21 20:08:15 | 显示全部楼层 |阅读模式
期刊全称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II
期刊简称Applications
影响因子2023Atsushi Yagi
视频video
发行地址Demonstrates the asymptotic convergence to stationary solutions for global solutions of abstract parabolic equations.Includes n-dimensional semilinear parabolic equations and higher dimensional Keller
学科分类SpringerBriefs in Mathematics
图书封面Titlebook: Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II; Applications Atsushi Yagi Book 2021 The Author(s), under exclus
影响因子This second volume continues the study on asymptotic convergence of global solutions of parabolic equations to stationary solutions by utilizing the theory of abstract parabolic evolution equations and the Łojasiewicz–Simon gradient inequality. In the first volume of the same title, after setting the abstract frameworks of arguments, a general convergence theorem was proved under the four structural assumptions of critical condition, Lyapunov function, angle condition, and gradient inequality. In this volume, with those abstract results reviewed briefly, their applications to concrete parabolic equations are described..Chapter 3 presents a discussion of semilinear parabolic equations of second order in general .n.-dimensional spaces, and Chapter 4 is devoted to treating epitaxial growth equations of fourth order, which incorporate general roughening functions. In Chapter 5 consideration is given to the Keller–Segel equations in one-, two-, and three-dimensionalspaces. Some of these results had already been obtained and published by the author in collaboration with his colleagues. However, by means of the abstract theory described in the first volume, those results can be extended m
Pindex Book 2021
The information of publication is updating

书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II影响因子(影响力)




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II影响因子(影响力)学科排名




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II网络公开度




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II网络公开度学科排名




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II被引频次




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II被引频次学科排名




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II年度引用




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II年度引用学科排名




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II读者反馈




书目名称Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:56:57 | 显示全部楼层
发表于 2025-3-22 04:11:31 | 显示全部楼层
Abstract Parabolic Evolution Equations and Łojasiewicz–Simon Inequality II978-981-16-2663-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
发表于 2025-3-22 05:03:40 | 显示全部楼层
https://doi.org/10.1007/978-981-16-2663-0Abstract Parabolic Evolution Equations; Łojasiewicz--Simon Inequality; Asymptotic Convergence of Solut
发表于 2025-3-22 09:39:30 | 显示全部楼层
发表于 2025-3-22 15:57:10 | 显示全部楼层
Atsushi YagiDemonstrates the asymptotic convergence to stationary solutions for global solutions of abstract parabolic equations.Includes n-dimensional semilinear parabolic equations and higher dimensional Keller
发表于 2025-3-22 18:43:20 | 显示全部楼层
发表于 2025-3-23 01:15:25 | 显示全部楼层
发表于 2025-3-23 01:44:52 | 显示全部楼层
https://doi.org/10.1007/978-3-662-41320-3We consider an epitaxial growth model in surface science. The model equation includes an effect of surface diffusion which is described by a biharmonic operator and a roughening which caused by the Schwoebel effect. Under suitable assumptions, we show that the results reviewed in Chap. . are available to the model equation.
发表于 2025-3-23 05:53:58 | 显示全部楼层
https://doi.org/10.1007/978-3-662-41320-3We consider the one-, two-, and three-dimensional Keller–Segel equations in biological population dynamics. The model equation includes an effect of attraction by chemical substance which is described by an advection equation. Under suitable assumptions, we show that the results reviewed in Chap. . are available to the these equations.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 04:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表