找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: A Nonlinear Transfer Technique for Renorming; Aníbal Moltó,José Orihuela,Manuel Valdivia Book 2009 Springer-Verlag Berlin Heidelberg 2009

[复制链接]
查看: 21448|回复: 35
发表于 2025-3-21 18:19:05 | 显示全部楼层 |阅读模式
期刊全称A Nonlinear Transfer Technique for Renorming
影响因子2023Aníbal Moltó,José Orihuela,Manuel Valdivia
视频video
发行地址Includes supplementary material:
学科分类Lecture Notes in Mathematics
图书封面Titlebook: A Nonlinear Transfer Technique for Renorming;  Aníbal Moltó,José Orihuela,Manuel Valdivia Book 2009 Springer-Verlag Berlin Heidelberg 2009
影响因子.Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem...Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c.0. (T) satisfies the authors‘ conditions, transferring the norm to X. Nevertheless the authors‘ maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Fréchet differentiable...This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis..
Pindex Book 2009
The information of publication is updating

书目名称A Nonlinear Transfer Technique for Renorming影响因子(影响力)




书目名称A Nonlinear Transfer Technique for Renorming影响因子(影响力)学科排名




书目名称A Nonlinear Transfer Technique for Renorming网络公开度




书目名称A Nonlinear Transfer Technique for Renorming网络公开度学科排名




书目名称A Nonlinear Transfer Technique for Renorming被引频次




书目名称A Nonlinear Transfer Technique for Renorming被引频次学科排名




书目名称A Nonlinear Transfer Technique for Renorming年度引用




书目名称A Nonlinear Transfer Technique for Renorming年度引用学科排名




书目名称A Nonlinear Transfer Technique for Renorming读者反馈




书目名称A Nonlinear Transfer Technique for Renorming读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:11:37 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/a/image/141605.jpg
发表于 2025-3-22 02:38:53 | 显示全部楼层
https://doi.org/10.1007/978-3-642-32557-1 nevertheless the main contribution are presented in 2.4–2.7 and our main tool will be Theorem 2.32. An important concept will be the .-continuity of a map Φ from a topological space . into a metric space .. The .-continuity property is an extension of continuity suitable to deal with countable deco
发表于 2025-3-22 04:51:35 | 显示全部楼层
发表于 2025-3-22 09:24:54 | 显示全部楼层
发表于 2025-3-22 16:52:52 | 显示全部楼层
发表于 2025-3-22 20:45:17 | 显示全部楼层
发表于 2025-3-23 00:18:33 | 显示全部楼层
发表于 2025-3-23 01:28:20 | 显示全部楼层
Radiative Transfer and Heat Conduction,Renorming in Banach space theory involves finding isomorphisms which improve the norm. That means making the geometrical and topological properties of the unit ball of a given Banach space as close as possible to those of the unit ball in a Hilbert space.
发表于 2025-3-23 07:26:19 | 显示全部楼层
https://doi.org/10.1007/978-3-031-02536-5All examples of .-slicely continuous maps are connected somehow with LUR Banach spaces. It is clear that if x is a denting point of a set . and Φ is a norm continuous map at x then Φ is slicely continuous at x. Hence if . is a LUR normed space then every norm continuous map Φ on .. is slicely continuous on ...
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 15:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表