找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[复制链接]
查看: 14628|回复: 74
发表于 2025-3-21 19:49:21 | 显示全部楼层 |阅读模式
书目名称Web and Big Data
副标题8th International Jo
编辑Wenjie Zhang,Anthony Tung,Hongjie Guo
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and
描述.The five-volume set LNCS 14961, 14962, 14963, 14964 and 14965 constitutes the refereed proceedings of the 8th International Joint Conference on Web and Big Data, APWeb-WAIM 2024, held in Jinhua, China, during August 30–September 1, 2024...The 171 full papers presented in these proceedings were carefully reviewed and selected from 558 submissions...The papers are organized in the following topical sections:.Part I: Natural language processing, Generative AI and LLM, Computer Vision and Recommender System...Part II: Recommender System, Knowledge Graph and Spatial and Temporal Data...Part III: Spatial and Temporal Data, Graph Neural Network, Graph Mining and Database System and Query Optimization...Part IV: Database System and Query Optimization, Federated and Privacy-Preserving Learning, Network, Blockchain and Edge computing, Anomaly Detection and Security..Part V: Anomaly Detection and Security, Information Retrieval, Machine Learning, Demonstration Paper and Industry Paper..
出版日期Conference proceedings 2024
关键词Machine Learning; Data mining; Graph data, RDF, social networks; Natural language processing; Knowledge
版次1
doihttps://doi.org/10.1007/978-981-97-7235-3
isbn_softcover978-981-97-7234-6
isbn_ebook978-981-97-7235-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Web and Big Data影响因子(影响力)




书目名称Web and Big Data影响因子(影响力)学科排名




书目名称Web and Big Data网络公开度




书目名称Web and Big Data网络公开度学科排名




书目名称Web and Big Data被引频次




书目名称Web and Big Data被引频次学科排名




书目名称Web and Big Data年度引用




书目名称Web and Big Data年度引用学科排名




书目名称Web and Big Data读者反馈




书目名称Web and Big Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:48:44 | 显示全部楼层
Hierarchical Review-Based Recommendation with Contrastive Collaborational gated sentiment-aware model for rating prediction in this paper. Specifically, to automatically suppress the influence of noisy reviews, we propose a hierarchical gating network to select informative textual signals at different levels of granularity. Specifically, a local gating module is propos
发表于 2025-3-22 03:40:21 | 显示全部楼层
发表于 2025-3-22 07:56:15 | 显示全部楼层
Adaptive Augmentation and Neighbor Contrastive Learning for Multi-Behavior Recommendation Edge weights are neglected when constructing augmented views based on the interaction graph. It leads to the omission of crucial nodes or edges during the augmentation process. (2) During contrastive learning, positive pairs are adopted by using topology structure. However, we argue that semantic s
发表于 2025-3-22 11:28:09 | 显示全部楼层
发表于 2025-3-22 14:16:02 | 显示全部楼层
发表于 2025-3-22 17:36:37 | 显示全部楼层
Contrastive Generator Generative Adversarial Networks for Sequential Recommendationon their historical interactions. However, these methods have some drawbacks as they require an effective generative model and training procedure to produce satisfactory results. These disadvantages include: 1) generative models lacking better generators for generative item sequences that user may b
发表于 2025-3-22 21:34:08 | 显示全部楼层
发表于 2025-3-23 02:40:50 | 显示全部楼层
Distribution-Aware Diversification for Personalized Re-ranking in Recommendationking stage, as the final stage of the recommendation system, has a direct impact on the recommendation results. Many works dedicate to improving the diversity of recommendation systems in the re-ranking stage, but most of them optimize diversity based on traditional pairwise distance between element
发表于 2025-3-23 06:26:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 01:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表