找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web Information Systems and Applications; 19th International C Xiang Zhao,Shiyu Yang,Jianxin Li Conference proceedings 2022 The Editor(s) (

[复制链接]
楼主: analgesic
发表于 2025-4-1 05:45:54 | 显示全部楼层
发表于 2025-4-1 09:57:34 | 显示全部楼层
Yanting Jiang,Di Wu systematic description of a cyclic load. Then, the books use two probabilistic fatigue theories toestablish the limit state function of a component under cyclic load, and further to present how to calculate the reliability of a component under a cyclic loading spectrum. Finally, the book presents h
发表于 2025-4-1 13:58:14 | 显示全部楼层
发表于 2025-4-1 18:02:58 | 显示全部楼层
发表于 2025-4-1 19:28:30 | 显示全部楼层
发表于 2025-4-2 02:43:36 | 显示全部楼层
Shuning Hou,Xueqing Zhao,Ning Liu,Xin Shi,Yun Wang,Guigang Zhang rise to non-equivalent double fault mutants, and hence, cannot be discarded. Moreover, we have developed several supplementary test case selection strategies to detect double faults that cannot be detected by existing test case selection strategies which aim at single-fault detection.
发表于 2025-4-2 05:16:25 | 显示全部楼层
发表于 2025-4-2 08:33:24 | 显示全部楼层
Temporal Knowledge Graph Embedding for Link Predictioncing the position embedding characterizing the dynamic information of temporal knowledge graph, TKGE can generate the evolutional embedding of entities and relations for downstream applications, such as link prediction, recommender system, and so on. We conduct experiments on several real datasets.
发表于 2025-4-2 11:16:50 | 显示全部楼层
Temporal Knowledge Graph Embedding for Link Predictioncing the position embedding characterizing the dynamic information of temporal knowledge graph, TKGE can generate the evolutional embedding of entities and relations for downstream applications, such as link prediction, recommender system, and so on. We conduct experiments on several real datasets.
发表于 2025-4-2 16:53:07 | 显示全部楼层
Fusion of Natural Language and Knowledge Graph for Multi-hop Reasoninghe natural language. We tested the performance of the NLKGF model on two datasets requiring multi-hop reasoning. The experimental results show that NLKGF beats advanced benchmark models in multi-hop reasoning tasks, which proves superiority of our model.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 07:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表