找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web Information Systems and Applications; 21st International C Cheqing Jin,Shiyu Yang,Yong Zhang Conference proceedings 2024 The Editor(s)

[复制链接]
楼主: crusade
发表于 2025-3-30 09:28:37 | 显示全部楼层
Hua Yin,Shuo Huang,ZhiJian Wang,Yong Ye,WenHui Zhu
发表于 2025-3-30 13:50:17 | 显示全部楼层
Yilin Chen,Tianxing Wu,Yunchang Liu,Yuxiang Wang,Guilin Qi
发表于 2025-3-30 17:59:19 | 显示全部楼层
发表于 2025-3-30 21:59:50 | 显示全部楼层
发表于 2025-3-31 02:28:30 | 显示全部楼层
Iterative Transfer Knowledge Distillation and Channel Pruning for Unsupervised Cross-Domain Compress, redundant channels in the student model are pruned to reduce the computational cost while retaining the model accuracy. In particular, the alternation of ACP and TKD ensures effective knowledge transfer, balancing the model size and its performance in the target domain. Experimental results demons
发表于 2025-3-31 07:16:08 | 显示全部楼层
Iterative Transfer Knowledge Distillation and Channel Pruning for Unsupervised Cross-Domain Compress, redundant channels in the student model are pruned to reduce the computational cost while retaining the model accuracy. In particular, the alternation of ACP and TKD ensures effective knowledge transfer, balancing the model size and its performance in the target domain. Experimental results demons
发表于 2025-3-31 13:03:28 | 显示全部楼层
发表于 2025-3-31 14:48:13 | 显示全部楼层
Aspect-Based Sentiment Classification Model Based on Multi-view Information Fusionom different perspectives has not been studied. To solve the above problems, an aspect-based sentiment classification model based on multi-view information fusion is proposed. By constructing an inference result set from the large language model (LLM), the LLM’s results are used to enhance the model
发表于 2025-3-31 19:00:57 | 显示全部楼层
发表于 2025-3-31 23:49:14 | 显示全部楼层
GTGNN: Global Graph and Taxonomy Tree for Graph Neural Network Session-Based Recommendationnomy tree to learn user intent from the perspective of attention mechanism and historical distribution data respectively, simulating the decision-making process when interacting with new items. Meanwhile, to solve the problem that GNN cannot learn new items, zero-shot learning is introduced to infer
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 19:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表