找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Web Information Systems Engineering – WISE 2021; 22nd International C Wenjie Zhang,Lei Zou,Lu Chen Conference proceedings 2021 Springer Nat

[复制链接]
楼主: JAZZ
发表于 2025-4-1 05:07:05 | 显示全部楼层
发表于 2025-4-1 09:32:58 | 显示全部楼层
Efficient Feature Interactions Learning with Gated Attention Transformerose a novel model named Gated Attention Transformer. In our method, .-order cross features are generated by crossing .-order cross features and .-order features, which uses the vanilla attention mechanism instead of the self-attention mechanism and is more explainable and efficient. In addition, as
发表于 2025-4-1 13:30:31 | 显示全部楼层
Exploiting Intra and Inter-field Feature Interaction with Self-Attentive Network for CTR Predictionntion mechanism to aggregate all interactive embeddings. Finally, we assign DNNs in the prediction layer to generate the final output. Extensive experiments on three real public datasets show that IISAN achieves better performance than existing state-of-the-art approaches for CTR prediction.
发表于 2025-4-1 14:39:42 | 显示全部楼层
发表于 2025-4-1 20:21:46 | 显示全部楼层
发表于 2025-4-2 01:25:32 | 显示全部楼层
发表于 2025-4-2 03:58:14 | 显示全部楼层
Performance Evaluation of Pre-trained Models in Sarcasm Detection Tasktection task when computing resources are limited. However, XLNet may not be suitable for sarcasm detection task. In addition, we implement detailed grid search for four hyperparameters to investigate their impact on PTMs. The results show that learning rate is the most important hyperparameter. Fur
发表于 2025-4-2 09:21:40 | 显示全部楼层
AMBD: Attention Based Multi-Block Deep Learning Model for Warehouse Dwell Time Predictionepresent the loading task statuses of different trucks. On the basis of that, we propose a deep learning based multi-block dwell time prediction model, called .. It incorporates the loading ability of warehouse and the execution process of loading tasks of preceding trucks in the queue. Moreover, to
发表于 2025-4-2 14:58:23 | 显示全部楼层
发表于 2025-4-2 16:31:19 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 01:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表