找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles; 4th International Wo Osmar R. Zaïane,Jaideep Srivastava,Brij Mas

[复制链接]
楼主: 万能
发表于 2025-3-28 17:30:46 | 显示全部楼层
Mining WWW Access Sequence by Matrix Clustering,ster of similar sequences. The resulting sequence elements are composed into a generalized sequence..Our method is evaluated with practical WWW access log, which shows that it is practically useful in finding long sequences and in presenting the generalized sequence in a graph.
发表于 2025-3-28 21:12:53 | 显示全部楼层
发表于 2025-3-29 02:01:22 | 显示全部楼层
发表于 2025-3-29 06:35:48 | 显示全部楼层
LumberJack: Intelligent Discovery and Analysis of Web User Traffic Composition, as association rules have been used in business applications. We have developed an automated method to directly infer the major groupings of user traffic on a Web site [Heer01]. We do this by utilizing multiple data features of user sessions in a clustering analysis. We have performed an extensive,
发表于 2025-3-29 11:00:45 | 显示全部楼层
发表于 2025-3-29 15:16:39 | 显示全部楼层
发表于 2025-3-29 18:04:05 | 显示全部楼层
发表于 2025-3-29 20:07:03 | 显示全部楼层
发表于 2025-3-30 02:27:14 | 显示全部楼层
A Customizable Behavior Model for Temporal Prediction of Web User Sequences,ronment for users. A key prerequisite for such services is the modeling of user behavior and a natural starting place for this are Web logs. In this paper we propose a model for predicting sequences of user accesses which is distinguished by two elements: it is customizable and it reflects sequentia
发表于 2025-3-30 08:06:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 12:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表