找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points; Third International Ron Kohavi,Brij M. Masand,Jaideep Srivastava Conf

[复制链接]
楼主: Bush
发表于 2025-3-23 10:49:54 | 显示全部楼层
发表于 2025-3-23 15:45:20 | 显示全部楼层
A Framework for Efficient and Anonymous Web Usage Mining Based on Client-Side Tracking,ndustry in recent years. Through WUM, we are able to gain a better understanding of both the web and web user access patterns; a knowledge that is crucial for realization of full economic potential of the web. In this chapter, we describe a framework for WUM that particularly satisfies the challengi
发表于 2025-3-23 21:58:19 | 显示全部楼层
发表于 2025-3-23 22:17:34 | 显示全部楼层
发表于 2025-3-24 05:43:44 | 显示全部楼层
发表于 2025-3-24 08:48:55 | 显示全部楼层
发表于 2025-3-24 11:29:31 | 显示全部楼层
发表于 2025-3-24 17:50:55 | 显示全部楼层
A Customer Purchase Incidence Model Applied to Recommender Services,e reviewed and adapted for web-based information markets. Second, we present the empirical validation of the model based on data collected from the information market of the Virtual University of the Vienna University of Economics and Business Administration from September 1999 to May 2001.
发表于 2025-3-24 22:33:40 | 显示全部楼层
LOGML: Log Markup Language for Web Usage Mining,WWWPal system. We generate web-log reports in LOGML format for a web site from web log files and the web graph. We further illustrate the usefulness of LOGML in web usage mining; we show the simplicity with which mining algorithms (for extracting increasingly complex frequent patterns) can be specified and implemented efficiently using LOGML.
发表于 2025-3-24 23:16:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 05:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表