拖累 发表于 2025-3-21 17:02:34

书目名称Learning to Rank for Information Retrieval影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0583009<br><br>        <br><br>书目名称Learning to Rank for Information Retrieval读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0583009<br><br>        <br><br>

anachronistic 发表于 2025-3-21 23:14:58

http://reply.papertrans.cn/59/5831/583009/583009_2.png

软弱 发表于 2025-3-22 02:12:26

http://reply.papertrans.cn/59/5831/583009/583009_3.png

精美食品 发表于 2025-3-22 05:16:47

Relational Rankingg process, but also considers the inter-relationship between documents. According to different relationships (e.g., similarity, preference, and dissimilarity), the task may correspond to different real applications (e.g., pseudo relevance feedback, topic distillation, and search result diversificati

孤僻 发表于 2025-3-22 08:52:42

Query-Dependent Ranking use a single ranking function to deal with all kinds of queries. Instead, one may achieve performance gain by leveraging the query differences. To consider the query difference in training, one can use a query-dependent loss function. To further consider the query difference in the test process, a

细节 发表于 2025-3-22 13:39:48

Semi-supervised Rankinge number of unlabeled documents or queries at a low cost. It would be very helpful if one can leverage such unlabeled data in the learning-to-rank process. In this chapter, we mainly review a transductive approach and an inductive approach to this task, and discuss how to improve these approaches by

哺乳动物 发表于 2025-3-22 18:19:22

http://reply.papertrans.cn/59/5831/583009/583009_7.png

骂人有污点 发表于 2025-3-22 22:46:55

http://reply.papertrans.cn/59/5831/583009/583009_8.png

到婚嫁年龄 发表于 2025-3-23 01:31:48

Applications of Learning to Rankithm to solve a real ranking problem. In particular, we will take question answering, multimedia retrieval, text summarization, online advertising, etc. as examples, for illustration. One will see from these examples that the key step is to extract effective features for the objects to be ranked by

Congeal 发表于 2025-3-23 09:08:19

cts of identity and identity construction of learners, teachers, and practitioners of science.Reports on empirical studies and commentaries serve to extend theoretical understandings related to identity and identity development vis-à-vis science education, link them to empirical evidence derived fro
页: [1] 2 3 4 5
查看完整版本: Titlebook: Learning to Rank for Information Retrieval; Tie-Yan Liu Book 20111st edition Springer-Verlag Berlin Heidelberg 2011 Information Retrieval.