找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks; Arindam Chaudhuri Book 2019 The Author(s), under exclusive

[复制链接]
查看: 39130|回复: 42
发表于 2025-3-21 19:52:37 | 显示全部楼层 |阅读模式
书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks
编辑Arindam Chaudhuri
视频video
概述Presents the latest research on hierarchical deep learning for sentiment analysis.Displays a mathematical abstraction of the sentiment analysis model in a very lucid manner.Proposes a sentiment analys
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks;  Arindam Chaudhuri Book 2019 The Author(s), under exclusive
描述.This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. .The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignm
出版日期Book 2019
关键词Sentiment Analysis; Information Retrieval; Gated Feedback Recurrent Neural Network; Text and Visual Fea
版次1
doihttps://doi.org/10.1007/978-981-13-7474-6
isbn_softcover978-981-13-7473-9
isbn_ebook978-981-13-7474-6Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive to Springer Nature Singapore Pte Ltd. 2019
The information of publication is updating

书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks影响因子(影响力)




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks影响因子(影响力)学科排名




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks网络公开度




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks网络公开度学科排名




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks被引频次




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks被引频次学科排名




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks年度引用




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks年度引用学科排名




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks读者反馈




书目名称Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:13:30 | 显示全部楼层
Experimental Setup: Visual and Text Sentiment Analysis Through Hierarchical Deep Learning Networks,asic aspects of the gated feedforward recurrent neural networks (GFRNN) are illustrated. The mathematical abstraction of HGFRNN is vividly explained. The chapter concludes with hierarchical gated feedforward recurrent neural networks for multimodal sentiment analysis.
发表于 2025-3-22 04:03:09 | 显示全部楼层
2191-5768 sis model in a very lucid manner.Proposes a sentiment analys.This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hiera
发表于 2025-3-22 07:19:24 | 显示全部楼层
发表于 2025-3-22 08:51:25 | 显示全部楼层
Visual and Text Sentiment Analysis,yperlink networks, pp 550–553, 2011, [.]). A tweet for images is shown in Fig. 5.1. The visual information analysis covering information retrieval from images has not made much progress relatively. Several studies have suggested that more than one-third of social blogs’ data are images.
发表于 2025-3-22 15:09:07 | 显示全部楼层
发表于 2025-3-22 18:09:55 | 显示全部楼层
发表于 2025-3-23 01:15:52 | 显示全部楼层
发表于 2025-3-23 01:36:18 | 显示全部楼层
Arindam Chaudhuriniveau, den sozialen Schutz, die Lebenshaltung, den sozialen Zusammenhalt und die Solidarität in der Gemeinschaft positiv zu beeinflussen (Art 2 EGV). Die dafür zur Verfügung stehenden Instrumente sind vielfältig und im Vertrag nicht systematisch geordnet. Dazu zählen die Errichtung eines Gemeinsame
发表于 2025-3-23 06:20:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 13:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表