找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Visual Knowledge Discovery and Machine Learning; Boris Kovalerchuk Book 2018 Springer International Publishing AG 2018 Intelligent Systems

[复制链接]
楼主: commotion
发表于 2025-3-27 00:05:49 | 显示全部楼层
Motivation, Problems and Approach,eversible lossy visual representations of n-D data along with their impact on efficiency of solving Data Mining/Machine Learning tasks. The approach concentrates on reversible representations along with the hybrid methodology to mitigate deficiencies of different representations.
发表于 2025-3-27 05:07:10 | 显示全部楼层
发表于 2025-3-27 05:19:43 | 显示全部楼层
Discovering Visual Features and Shape Perception Capabilities in GLC,s for classification these high-dimensional data. The chapter concludes with a description of the cooperative visualization approach to enhance Knowledge Discovery in solving Data Mining/Machine Learning tasks.
发表于 2025-3-27 09:35:49 | 显示全部楼层
Pareto Front and General Line Coordinates,pter shows a way to accomplish this with GLC-L visualization method defined Chap. 7. It also shows a way to visualize the approximation set for the Pareto Front with Collocated Paired Coordinates, defined in Chap. 2 in comparison with Parallel Coordinates to assists in finding “best” Pareto points.
发表于 2025-3-27 14:26:11 | 显示全部楼层
Toward Virtual Data Scientist and Super-Intelligence with Visual Means, to meet this Big data challenge, with a minimal contribution from data scientists. This chapter describes our vision of such a “virtual data scientist”, based on the visual approach of the General Line Coordinates.
发表于 2025-3-27 19:51:09 | 显示全部楼层
发表于 2025-3-28 01:00:09 | 显示全部楼层
发表于 2025-3-28 02:17:59 | 显示全部楼层
Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L,relations and dimension reduction. Classification and dimension reduction tasks from three domains, image processing, computer-aided medical diagnostics and finance (stock market), are used to illustrate this method.
发表于 2025-3-28 06:39:55 | 显示全部楼层
发表于 2025-3-28 13:11:00 | 显示全部楼层
Intelligent Systems Reference Libraryhttp://image.papertrans.cn/v/image/983746.jpg
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 15:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表