书目名称 | Vibration of Strongly Nonlinear Discontinuous Systems | 编辑 | Vladimir I. Babitsky,V. L. Krupenin | 视频video | | 丛书名称 | Foundations of Engineering Mechanics | 图书封面 |  | 描述 | Among the wide diversity of nonlinear mechanical systems, it is possible to distinguish a representative class of the systems which may be characterised by the presence of threshold nonlinear positional forces. Under particular configurations, such systems demonstrate a sudden change in the behaviour of elastic and dissipative forces. Mathematical study of such systems involves an analysis of equations of motion containing large-factored nonlinear terms which are associated with the above threshold nonlinearity. Due to this, we distinguish such discontinuous systems from the much wider class of essentially nonlinear systems, and define them as strongly nonlinear systems‘. The vibration occurring in strongly nonlinear systems may be characterised by a sudden and abrupt change of the velocity at particular time instants. Such a vibration is said to be non-smooth. The systems most studied from this class are those with relaxation (Van Der Pol, Andronov, Vitt, Khaikhin, Teodorchik, etc. [5,65,70,71,98,171,181]), where the non-smooth vibration usually appears due to the presence of large nonconservative nonlinear forces. Equations of motion describing the vibration with relaxation may b | 出版日期 | Book 2001 | 关键词 | Analysis; Transformation; design; operator; resonance; simulation; vibration | 版次 | 1 | doi | https://doi.org/10.1007/978-3-540-44488-6 | isbn_softcover | 978-3-642-07471-4 | isbn_ebook | 978-3-540-44488-6Series ISSN 1612-1384 Series E-ISSN 1860-6237 | issn_series | 1612-1384 | copyright | Springer-Verlag Berlin Heidelberg 2001 |
The information of publication is updating
|
|