找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Verification of Business Rules Programs; Bruno Berstel-Da Silva Book 2014 Springer-Verlag Berlin Heidelberg 2014 AI.artificial intelligenc

[复制链接]
楼主: Jackson
发表于 2025-3-28 16:44:55 | 显示全部楼层
发表于 2025-3-28 21:09:56 | 显示全部楼层
Correctness of Programs: A Comparisonen nondeterministic programs. This comparison investigates whether a parallel program, and then a nondeterministic one, can be found for any rule program, so that it has the same input/output behavior. We will see that in general, one cannot find a parallel program with the same input/output behavio
发表于 2025-3-29 01:51:25 | 显示全部楼层
Main Steps in Rule Program Verificationividual correctness formulas for its rules. This verification method is composed of several proof rules that are suited to various types of rule programs and assertions. In the present chapter, we introduce a simpler proof rule for a particular class of rule programs, so as to exhibit the core mecha
发表于 2025-3-29 05:12:13 | 显示全部楼层
A Verification Method for Rule Programsograms. In this chapter, we expose the proof rule for the general case. We prove that this proof rule is sound and relatively complete. We illustrate it with the complete application of our verification method on an example rule program.
发表于 2025-3-29 07:27:10 | 显示全部楼层
Book 2014gement systems, it has been possible to introduce rule-based programming to nonprogrammers, allowing them to map expert intent into code in applications such as fraud detection, financial transactions, healthcare, retail, and marketing. However, a remaining concern is the quality, safety, and reliab
发表于 2025-3-29 14:26:32 | 显示全部楼层
发表于 2025-3-29 17:07:23 | 显示全部楼层
发表于 2025-3-29 23:42:51 | 显示全部楼层
,Die beiden Hauptsätze der Wertverteilungslehre,entsprechend ihrer Vielfachheit gezählt wird. Wird eine .-fache .-Stelle nur (.-1) mal gezählt, dann schreibt man . (., .). Entsprechendes gilt für die Polstellenanzahlen .(.,.) =. (.,∞) und .1 (.,.) = .1 (., ∞).
发表于 2025-3-30 03:47:27 | 显示全部楼层
发表于 2025-3-30 06:36:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 20:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表