找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Vector Analysis; Klaus Jänich Textbook 20011st edition Springer-Verlag New York 2001 Derivative.Vector field.calculus.differential equatio

[复制链接]
楼主: INFER
发表于 2025-3-28 17:28:52 | 显示全部楼层
Klaus Jänichdressed when higher performance and lower poweris desired. The first area is the device technology. Scaling ofdevices has realized steady improvements for many years. The secondarea is improved circuit design techniques. The final area is at thearchitectural level. This monograph focuses on the prob
发表于 2025-3-28 21:12:40 | 显示全部楼层
发表于 2025-3-29 01:10:40 | 显示全部楼层
发表于 2025-3-29 05:01:24 | 显示全部楼层
发表于 2025-3-29 07:54:43 | 显示全部楼层
0172-6056 he integral theorems of Gauss, Stokes, and Green. Modern vector analysis distills these into the Cartan calculus and a general form of Stokes‘ theorem. This essentially modern text carefully develops vector analysis on manifolds and reinterprets it from the classical viewpoint (and with the classica
发表于 2025-3-29 11:28:41 | 显示全部楼层
The Tangent Space,r-algebraic (easy) problems whenever possible. Recall that locally at ., the linear approximation of a map .: ℝ. → ℝ. is the .., ℝ. → ℝ. of . at .. The differential is characterized by ., where ., and given by the Jacobian matrix. But how can a differentiable map .: . → . between. . be characterized
发表于 2025-3-29 16:00:19 | 显示全部楼层
The Concept of Orientation,on is reversed: the differences Δ.. = ... − .. in the Riemann sums Σ. (..)Δ.. are positive or negative according to whether the partition points are increasing or decreasing. The same thing happens with line integrals.where . is a curve in ℝ., and with contour integrals ... (.) . in complex function
发表于 2025-3-29 19:51:46 | 显示全部楼层
发表于 2025-3-30 00:43:05 | 显示全部楼层
发表于 2025-3-30 05:38:48 | 显示全部楼层
Textbook 20011st editionl theorems of Gauss, Stokes, and Green. Modern vector analysis distills these into the Cartan calculus and a general form of Stokes‘ theorem. This essentially modern text carefully develops vector analysis on manifolds and reinterprets it from the classical viewpoint (and with the classical notation
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 07:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表