找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Variational Methods for Machine Learning with Applications to Deep Networks; Lucas Pinheiro Cinelli,Matheus Araújo Marins,Sérgi Book 2021

[复制链接]
楼主: 中间时期
发表于 2025-3-25 04:20:30 | 显示全部楼层
发表于 2025-3-25 10:30:12 | 显示全部楼层
Variational Autoencoder,ercome, such as the Conditional VAE, the . − . ., the Categorical VAE, and others. Moreover, we provide training and sample generation experiments with VAEs on two image data sets and finish off with an illustrative example of semi-supervised learning with VAEs.
发表于 2025-3-25 13:45:39 | 显示全部楼层
发表于 2025-3-25 17:10:41 | 显示全部楼层
Introduction, Specially, on the heated field of Deep Learning (DL) we have recently seen great advances. The aim of the chapter is to show the reader how relevant the subject is and motive him or her. Additionally, we introduce the mathematical notation to come on the rest of the book.
发表于 2025-3-25 21:22:45 | 显示全部楼层
发表于 2025-3-26 01:08:50 | 显示全部楼层
发表于 2025-3-26 06:42:38 | 显示全部楼层
发表于 2025-3-26 12:08:04 | 显示全部楼层
发表于 2025-3-26 12:45:19 | 显示全部楼层
Book 2021om the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference
发表于 2025-3-26 18:57:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 17:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表