找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Variational Calculus and Optimal Control; Optimization with El John L. Troutman Textbook 1996Latest edition Springer Science+Business Media

[复制链接]
查看: 6785|回复: 52
发表于 2025-3-21 17:46:07 | 显示全部楼层 |阅读模式
书目名称Variational Calculus and Optimal Control
副标题Optimization with El
编辑John L. Troutman
视频video
丛书名称Undergraduate Texts in Mathematics
图书封面Titlebook: Variational Calculus and Optimal Control; Optimization with El John L. Troutman Textbook 1996Latest edition Springer Science+Business Media
描述Although the calculus of variations has ancient origins in questions of Ar­ istotle and Zenodoros, its mathematical principles first emerged in the post­ calculus investigations of Newton, the Bernoullis, Euler, and Lagrange. Its results now supply fundamental tools of exploration to both mathematicians and those in the applied sciences. (Indeed, the macroscopic statements ob­ tained through variational principles may provide the only valid mathemati­ cal formulations of many physical laws. ) Because of its classical origins, variational calculus retains the spirit of natural philosophy common to most mathematical investigations prior to this century. The original applications, including the Bernoulli problem of finding the brachistochrone, require opti­ mizing (maximizing or minimizing) the mass, force, time, or energy of some physical system under various constraints. The solutions to these problems satisfy related differential equations discovered by Euler and Lagrange, and the variational principles of mechanics (especially that of Hamilton from the last century) show the importance of also considering solutions that just provide stationary behavior for some measure of performa
出版日期Textbook 1996Latest edition
关键词Calculus; Convexity; Konvexe Funktion; Optimal control; Variationsrechnung; linear optimization; optimizat
版次2
doihttps://doi.org/10.1007/978-1-4612-0737-5
isbn_softcover978-1-4612-6887-1
isbn_ebook978-1-4612-0737-5Series ISSN 0172-6056 Series E-ISSN 2197-5604
issn_series 0172-6056
copyrightSpringer Science+Business Media New York 1996
The information of publication is updating

书目名称Variational Calculus and Optimal Control影响因子(影响力)




书目名称Variational Calculus and Optimal Control影响因子(影响力)学科排名




书目名称Variational Calculus and Optimal Control网络公开度




书目名称Variational Calculus and Optimal Control网络公开度学科排名




书目名称Variational Calculus and Optimal Control被引频次




书目名称Variational Calculus and Optimal Control被引频次学科排名




书目名称Variational Calculus and Optimal Control年度引用




书目名称Variational Calculus and Optimal Control年度引用学科排名




书目名称Variational Calculus and Optimal Control读者反馈




书目名称Variational Calculus and Optimal Control读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:50:22 | 显示全部楼层
Piecewise , Extremal Functions should exhibit “corners,” and it is natural to wonder whether cornered curves . and . such as those shown in Figure 7.1 might not give improved results for other problems. Such curves are represented readily by functions which are ., or ..
发表于 2025-3-22 03:58:37 | 显示全部楼层
发表于 2025-3-22 06:06:22 | 显示全部楼层
发表于 2025-3-22 11:28:33 | 显示全部楼层
发表于 2025-3-22 13:57:06 | 显示全部楼层
Sufficient Conditions for a Minimumve also seen in §7.6 that a minimizing function . must necessarily satisfy the Weierstrass condition ℰ(. .(.),.(.) ≥ 0, ∀ . ∈ ℝ., . ∈ [.], where ℰ(.). .(.) - .(.)- .(.)⋅(.),(1)and this is recognized as a convexity statement for .(. . .) along a trajectory in ℝ. defined by ..
发表于 2025-3-22 17:51:02 | 显示全部楼层
Necessary Conditions for Optimalitythe adjoint equation (a necessary condition) can be used to suggest sufficient conditions for optimality. Finally, in §11.3, we extend our control-theory approach to more general problems involving Lagrangian inequality constraints, and in Theorem 11.20 we obtain a Lagrangian multiplier rule of the Kuhn-Tucker type.
发表于 2025-3-22 23:11:16 | 显示全部楼层
发表于 2025-3-23 01:56:37 | 显示全部楼层
Standard Optimization Problemshen “best” can be assessed numerically, then this assessment may be regarded as a real valued function of the method under consideration which is to be optimized—either maximized or minimized. We are interested not only in the optimum values which can be achieved, but also in the method (or methods)
发表于 2025-3-23 08:41:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 04:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表