找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Validity, Reliability, and Significance; Empirical Methods fo Stefan Riezler,Michael Hagmann Book 2024Latest edition The Editor(s) (if appl

[复制链接]
楼主: rupture
发表于 2025-3-23 10:46:25 | 显示全部楼层
Book 2024Latest editionffect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a
发表于 2025-3-23 17:11:00 | 显示全部楼层
发表于 2025-3-23 19:21:23 | 显示全部楼层
Stefan Riezler,Michael Hagmanngical studies. It deals with majorcell types studied in the field of toxicology and will be useful foranyone wishing to start work with animal cell cultures or to refreshtheir knowledge relating to .in vitro. cell models. Fundamentalchapters deal with the general biology of cytotoxicity and cellimmo
发表于 2025-3-23 23:57:46 | 显示全部楼层
发表于 2025-3-24 05:24:07 | 显示全部楼层
Stefan Riezler,Michael Hagmannf specific genes. The action of progesterone is mediated by specific high-affinity PRs which belong to the superfamily of nuclear receptors (Green and Chambon 1986; Evans 1988; O’Malley 1990). Once activated through binding of the hormone, the progesterone receptor (PR) binds to short .-acting regul
发表于 2025-3-24 09:25:30 | 显示全部楼层
Stefan Riezler,Michael Hagmannus system. The complexity of organization, the heteroge­ neity of cell types and their interactions, and the difficulty of controlling experimental variables in intact organisms make this a formidable task. Because of the ability that it affords to analyze smaller components of the nervous system (e
发表于 2025-3-24 11:04:46 | 显示全部楼层
发表于 2025-3-24 16:28:48 | 显示全部楼层
发表于 2025-3-24 22:31:56 | 显示全部楼层
发表于 2025-3-24 23:52:38 | 显示全部楼层
Introduction,sed in this book include the problems of validity, reliability, and significance. In the case of machine learning, these correspond to the questions of whether a model predicts what it purports to predict, whether a model’s performance is consistent across replications, and whether a performance dif
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 18:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表