找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Unsupervised Information Extraction by Text Segmentation; Eli Cortez,Altigran S. Silva Book 2013 The Author(s) 2013 Databases.Information

[复制链接]
查看: 24970|回复: 42
发表于 2025-3-21 16:19:30 | 显示全部楼层 |阅读模式
书目名称Unsupervised Information Extraction by Text Segmentation
编辑Eli Cortez,Altigran S. Silva
视频video
概述Presents and evaluates a new unsupervised approach for the problem of Information Extraction by Text Segmentation (IETS).Describes how to automatically use content-based features to directly learn str
丛书名称SpringerBriefs in Computer Science
图书封面Titlebook: Unsupervised Information Extraction by Text Segmentation;  Eli Cortez,Altigran S. Silva Book 2013 The Author(s) 2013 Databases.Information
描述.A new unsupervised approach to the problem of Information Extraction by Text Segmentation (IETS) is proposed, implemented and evaluated herein. The authors’ approach relies on information available on pre-existing data to learn how to associate segments in the input string with attributes of a given domain relying on a very effective set of content-based features. The effectiveness of the content-based features is also exploited to directly learn from test data structure-based features, with no previous human-driven training, a feature unique to the presented approach. Based on the approach, a number of results are produced to address the IETS problem in an unsupervised fashion. In particular, the authors develop, implement and evaluate distinct IETS methods, namely .ONDUX., .JUDIE. and .iForm...ONDUX. (On Demand Unsupervised Information Extraction) is an unsupervised probabilistic approach for IETS that relies on content-based features to bootstrap the learning of structure-based features. .JUDIE. (Joint Unsupervised Structure Discovery and Information Extraction) aims at automatically extracting several semi-structured data records in the form of continuous text and having no ex
出版日期Book 2013
关键词Databases; Information Extraction; Knowledge Bases; Markov Models; Structured Data; Text Segmentation; Tex
版次1
doihttps://doi.org/10.1007/978-3-319-02597-1
isbn_softcover978-3-319-02596-4
isbn_ebook978-3-319-02597-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s) 2013
The information of publication is updating

书目名称Unsupervised Information Extraction by Text Segmentation影响因子(影响力)




书目名称Unsupervised Information Extraction by Text Segmentation影响因子(影响力)学科排名




书目名称Unsupervised Information Extraction by Text Segmentation网络公开度




书目名称Unsupervised Information Extraction by Text Segmentation网络公开度学科排名




书目名称Unsupervised Information Extraction by Text Segmentation被引频次




书目名称Unsupervised Information Extraction by Text Segmentation被引频次学科排名




书目名称Unsupervised Information Extraction by Text Segmentation年度引用




书目名称Unsupervised Information Extraction by Text Segmentation年度引用学科排名




书目名称Unsupervised Information Extraction by Text Segmentation读者反馈




书目名称Unsupervised Information Extraction by Text Segmentation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:00:40 | 显示全部楼层
,,ed approach to deal with the Information Extraction by Text Segmentation problem. . was first presented in Toda et al. (., .). In the following is described the scenario where . is applied, and the method in detail. A set of experiments is also reported that shows that . is effective and works well in different scenarios.
发表于 2025-3-22 03:15:42 | 显示全部楼层
发表于 2025-3-22 06:36:06 | 显示全部楼层
https://doi.org/10.1007/978-3-319-02597-1Databases; Information Extraction; Knowledge Bases; Markov Models; Structured Data; Text Segmentation; Tex
发表于 2025-3-22 09:51:56 | 显示全部楼层
发表于 2025-3-22 12:55:11 | 显示全部楼层
Conclusions and Future Work,This chapter presents the conclusions and discuss directions for future work based on the unsupervised approach presented here.
发表于 2025-3-22 18:46:30 | 显示全部楼层
发表于 2025-3-23 00:51:54 | 显示全部楼层
发表于 2025-3-23 04:25:20 | 显示全部楼层
发表于 2025-3-23 08:19:16 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 00:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表