找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Universal Time-Series Forecasting with Mixture Predictors; Daniil Ryabko Book 2020 Springer Nature Switzerland AG 2020 Time Series.Forecas

[复制链接]
楼主: 鸟场
发表于 2025-3-23 11:55:28 | 显示全部楼层
发表于 2025-3-23 15:13:14 | 显示全部楼层
发表于 2025-3-23 19:12:51 | 显示全部楼层
Conclusion and Outlook,pects of the phenomenon. Yet other aspects remain completely unknown, and there is no hope that the process generating the data indeed comes from the model class. For this reason, the statistician may be content with having non-zero error no matter how much data may become available now or in the fu
发表于 2025-3-23 23:10:38 | 显示全部楼层
Book 2020orm of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.
发表于 2025-3-24 05:38:42 | 显示全部楼层
发表于 2025-3-24 09:08:20 | 显示全部楼层
Prediction in KL Divergence,This chapter contains the main results of this volume, it is devoted to the problems of prediction with KL loss.
发表于 2025-3-24 13:12:04 | 显示全部楼层
Daniil RyabkoConsiders problem of sequential probability forecasting in the most general setting.Results presented concern the foundations of problems in areas such as machine learning, information theory and data
发表于 2025-3-24 16:08:05 | 显示全部楼层
发表于 2025-3-24 20:02:52 | 显示全部楼层
发表于 2025-3-24 23:18:15 | 显示全部楼层
Notation and Definitions, …, ... We consider stochastic processes (probability measures) on . where . is the sigma-field generated by the (countable) set . of cylinders, . where the words .. take all possible values in .. We use . for expectation with respect to a measure ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 05:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表