找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Unified Methods for Censored Longitudinal Data and Causality; Mark J. Laan,James M. Robins Book 2003 Springer Science+Business Media New Y

[复制链接]
查看: 6856|回复: 41
发表于 2025-3-21 19:33:00 | 显示全部楼层 |阅读模式
书目名称Unified Methods for Censored Longitudinal Data and Causality
编辑Mark J. Laan,James M. Robins
视频video
概述Includes supplementary material:
丛书名称Springer Series in Statistics
图书封面Titlebook: Unified Methods for Censored Longitudinal Data and Causality;  Mark J. Laan,James M. Robins Book 2003 Springer Science+Business Media New Y
描述During the last decades, there has been an explosion in computation and information technology. This development comes with an expansion of complex observational studies and clinical trials in a variety of fields such as medicine, biology, epidemiology, sociology, and economics among many others, which involve collection of large amounts of data on subjects or organisms over time. The goal of such studies can be formulated as estimation of a finite dimensional parameter of the population distribution corresponding to the observed time- dependent process. Such estimation problems arise in survival analysis, causal inference and regression analysis. This book provides a fundamental statistical framework for the analysis of complex longitudinal data. It provides the first comprehensive description of optimal estimation techniques based on time-dependent data structures subject to informative censoring and treatment assignment in so called semiparametric models. Semiparametric models are particularly attractive since they allow the presence of large unmodeled nuisance parameters. These techniques include estimation of regression parameters in the familiar (multivariate) generalized lin
出版日期Book 2003
关键词Censoring; Computerassistierte Detektion; Estimator; Maxima; Radiologieinformationssystem; Regression ana
版次1
doihttps://doi.org/10.1007/978-0-387-21700-0
isbn_softcover978-1-4419-3055-2
isbn_ebook978-0-387-21700-0Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer Science+Business Media New York 2003
The information of publication is updating

书目名称Unified Methods for Censored Longitudinal Data and Causality影响因子(影响力)




书目名称Unified Methods for Censored Longitudinal Data and Causality影响因子(影响力)学科排名




书目名称Unified Methods for Censored Longitudinal Data and Causality网络公开度




书目名称Unified Methods for Censored Longitudinal Data and Causality网络公开度学科排名




书目名称Unified Methods for Censored Longitudinal Data and Causality被引频次




书目名称Unified Methods for Censored Longitudinal Data and Causality被引频次学科排名




书目名称Unified Methods for Censored Longitudinal Data and Causality年度引用




书目名称Unified Methods for Censored Longitudinal Data and Causality年度引用学科排名




书目名称Unified Methods for Censored Longitudinal Data and Causality读者反馈




书目名称Unified Methods for Censored Longitudinal Data and Causality读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:56:28 | 显示全部楼层
发表于 2025-3-22 02:46:31 | 显示全部楼层
发表于 2025-3-22 08:01:43 | 显示全部楼层
Unified Approach for Causal Inference and Censored Data,ere A.(.) = .(. ≤ .) jumps to 1 when the subject is right-censored, . (.) is a counting process that jumps when the subject is monitored, .(.) indicates which of the covariates are measured at time ., and .(t) denotes the treatment that the subject receives at time . In other words, .(.) can denote
发表于 2025-3-22 12:34:58 | 显示全部楼层
Book 2003servational studies and clinical trials in a variety of fields such as medicine, biology, epidemiology, sociology, and economics among many others, which involve collection of large amounts of data on subjects or organisms over time. The goal of such studies can be formulated as estimation of a fini
发表于 2025-3-22 15:49:08 | 显示全部楼层
发表于 2025-3-22 18:35:39 | 显示全部楼层
发表于 2025-3-22 22:45:15 | 显示全部楼层
Cross-Sectional Data and Right-Censored Data Combined, time ., while if . > ., then we observe . Given a particular full data model . such as the generalized linear regression model, multiplicative intensity model, or nonparametric model, let . = .(.) be a parameter of interest defined on this full data model.
发表于 2025-3-23 02:31:23 | 显示全部楼层
发表于 2025-3-23 07:03:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 02:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表