找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 5th International Wo Carole H. Sudre,Christian F. Baumgartner,Will

[复制链接]
楼主: 断头台
发表于 2025-3-30 10:28:42 | 显示全部楼层
发表于 2025-3-30 15:55:59 | 显示全部楼层
,Uncertainty Estimation in Liver Tumor Segmentation Using the Posterior Bootstrap,sterior bootstrap method provides improvement on uncertainty estimation with equivalent segmentation performance. The proposed method is easy to implement, compatible with any deep learning-based image segmentation pipeline, and doesn’t require additional hyper-parameter tuning, enabling it to total
发表于 2025-3-30 19:45:49 | 显示全部楼层
发表于 2025-3-30 23:18:29 | 显示全部楼层
https://doi.org/10.1007/978-3-031-44336-7Uncertainty modelling; Machine learning; Medical Imaging; Uncertainty calibration; artificial intelligen
发表于 2025-3-31 04:38:36 | 显示全部楼层
978-3-031-44335-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-31 05:21:50 | 显示全部楼层
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging978-3-031-44336-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-31 10:00:25 | 显示全部楼层
发表于 2025-3-31 14:56:54 | 显示全部楼层
,Numerical Uncertainty of Convolutional Neural Networks Inference for Structural Brain MRI Analysis,-linear registration: 19 vs 13 significant bits on average; whole-brain segmentation: 0.99 vs 0.92 Sørensen-Dice score on average), which suggests a better reproducibility of CNN results across execution environments.
发表于 2025-3-31 18:50:34 | 显示全部楼层
Dimensionality Reduction for Improving Out-of-Distribution Detection in Medical Image Segmentation,leneck features with principal component analysis, images the model failed on were detected with high performance and minimal computational load. Specifically, the proposed technique achieved 92% area under the receiver operating characteristic curve and 94% area under the precision-recall curve and can run in seconds on a central processing unit.
发表于 2025-4-1 00:37:50 | 显示全部楼层
Conference proceedings 2023publication. The accepted papers cover the fields of uncertainty estimation and modeling, as well as out of distribution management, domain shift robustness, Bayesian deep learning and uncertainty calibration..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-20 22:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表