找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 6th International Wo Carole H. Sudre,Raghav Mehta,William M. Wells

[复制链接]
查看: 28451|回复: 59
发表于 2025-3-21 19:30:21 | 显示全部楼层 |阅读模式
书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging
副标题6th International Wo
编辑Carole H. Sudre,Raghav Mehta,William M. Wells
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 6th International Wo Carole H. Sudre,Raghav Mehta,William M. Wells
描述.This book constitutes the refereed proceedings of the 6th Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, on October 10, 2024...The 20 full papers presented in this book were carefully reviewed and selected from 28 submissions. They are organized in the following topical sections: annotation uncertainty; clinical implementation of uncertainty modelling and risk management in clinical pipelines; out of distribution and domain shift identification and management; uncertainty modelling and estimation..
出版日期Conference proceedings 2025
关键词Uncertainty modelling; Medical imaging; Annotation uncertainty; Machine learning; Clinical pipelines; Out
版次1
doihttps://doi.org/10.1007/978-3-031-73158-7
isbn_softcover978-3-031-73157-0
isbn_ebook978-3-031-73158-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging影响因子(影响力)




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging影响因子(影响力)学科排名




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging网络公开度




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging网络公开度学科排名




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging被引频次




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging被引频次学科排名




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging年度引用




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging年度引用学科排名




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging读者反馈




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:24:13 | 显示全部楼层
发表于 2025-3-22 01:35:11 | 显示全部楼层
发表于 2025-3-22 06:41:22 | 显示全部楼层
发表于 2025-3-22 12:01:29 | 显示全部楼层
发表于 2025-3-22 13:35:36 | 显示全部楼层
Uncertainty-Aware Bayesian Deep Learning with Noisy Training Labels for Epileptic Seizure Detectionground truth” information about the target phenomena. In actuality, the labels, often derived from human annotations, are noisy/unreliable. This . poses significant challenges for modalities such as electroencephalography (EEG), in which “ground truth” is difficult to ascertain without invasive expe
发表于 2025-3-22 18:45:17 | 显示全部楼层
发表于 2025-3-22 23:09:34 | 显示全部楼层
发表于 2025-3-23 03:22:23 | 显示全部楼层
Diagnose with Uncertainty Awareness: Diagnostic Uncertainty Encoding Framework for Radiology Report ance the efficiency of radiologist decision-making. For clinical accuracy, most existing approaches focus on achieving accurate predictions of the existence of abnormalities, despite the inherent uncertainty impacting the reliability of the generated report, which is often clarified by radiologists
发表于 2025-3-23 08:32:19 | 显示全部楼层
Making Deep Learning Models Clinically Useful - Improving Diagnostic Confidence in Inherited Retinale methods lack transparency and interpretability of point predictions without assessing the quality of their outputs. Knowing how much confidence there is in a prediction is essential for gaining clinicians’ trust in the technology and its use in medical decision-making. In this paper, we explore th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 08:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表