找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Transparency and Interpretability for Learned Representations of Artificial Neural Networks; Richard Meyes Book 2022 The Editor(s) (if app

[复制链接]
查看: 28059|回复: 35
发表于 2025-3-21 20:06:50 | 显示全部楼层 |阅读模式
书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks
编辑Richard Meyes
视频video
图书封面Titlebook: Transparency and Interpretability for Learned Representations of Artificial Neural Networks;  Richard Meyes Book 2022 The Editor(s) (if app
描述.Artificial intelligence (AI) is a concept, whose meaning and perception has changed considerably over the last decades. Starting off with individual and purely theoretical research efforts in the 1950s, AI has grown into a fully developed research field of modern times and may arguably emerge as one of the most important technological advancements of mankind. Despite these rapid technological advancements, some key questions revolving around the matter of transparency, interpretability and explainability of an AI’s decision-making remain unanswered. Thus, a young research field coined with the general term .Explainable AI. (XAI) has emerged from increasingly strict requirements for AI to be used in safety critical or ethically sensitive domains. An important research branch of XAI is to develop methods that help to facilitate a deeper understanding for the learned knowledge of artificial neural systems. In this book, a series of scientific studies are presented that shed lighton how to adopt an empirical neuroscience inspired approach to investigate a neural network’s learned representation in the same spirit as neuroscientific studies of the brain..
出版日期Book 2022
关键词Transparency; Interpretability; Explainability; Learned Representation; XAI; Explainable AI; Artificial Ne
版次1
doihttps://doi.org/10.1007/978-3-658-40004-0
isbn_softcover978-3-658-40003-3
isbn_ebook978-3-658-40004-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks影响因子(影响力)




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks影响因子(影响力)学科排名




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks网络公开度




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks网络公开度学科排名




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks被引频次




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks被引频次学科排名




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks年度引用




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks年度引用学科排名




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks读者反馈




书目名称Transparency and Interpretability for Learned Representations of Artificial Neural Networks读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:38:13 | 显示全部楼层
第129188主题贴--第2楼 (沙发)
发表于 2025-3-22 03:09:26 | 显示全部楼层
板凳
发表于 2025-3-22 06:29:15 | 显示全部楼层
第4楼
发表于 2025-3-22 09:05:10 | 显示全部楼层
5楼
发表于 2025-3-22 16:13:51 | 显示全部楼层
6楼
发表于 2025-3-22 17:37:20 | 显示全部楼层
7楼
发表于 2025-3-22 23:52:41 | 显示全部楼层
8楼
发表于 2025-3-23 03:33:33 | 显示全部楼层
9楼
发表于 2025-3-23 09:30:59 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 12:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表