找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains; Mikhail Borsuk Book 20101st edition The Editor(s) (if app

[复制链接]
查看: 51400|回复: 35
发表于 2025-3-21 17:15:52 | 显示全部楼层 |阅读模式
书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains
编辑Mikhail Borsuk
视频video
概述Estimates of weak solutions to the transmission problem for linear elliptic equations with minimal smooth coefficients in n-dimensional conic domains.Investigation of weak solutions for general diverg
丛书名称Frontiers in Mathematics
图书封面Titlebook: Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains;  Mikhail Borsuk Book 20101st edition The Editor(s) (if app
描述The goal of this book is to investigate the behavior of weak solutions of the elliptic transmission problem in a neighborhood of boundary singularities: angular and conic points or edges. This problem is discussed for both linear and quasilinear equations. A principal new feature of this book is the consideration of our estimates of weak solutions of the transmission problem for linear elliptic equations with minimal smooth coeciffients in n-dimensional conic domains. Only few works are devoted to the transmission problem for quasilinear elliptic equations. Therefore, we investigate the weak solutions for general divergence quasilinear elliptic second-order equations in n-dimensional conic domains or in domains with edges.The basis of the present work is the method of integro-differential inequalities. Such inequalities with exact estimating constants allow us to establish possible or best possible estimates of solutions to boundary value problems for elliptic equations near singularities on the boundary. A new Friedrichs–Wirtinger type inequality is proved and applied to the investigation of the behavior of weak solutions of the transmission problem.All results are given with comp
出版日期Book 20101st edition
关键词Boundary value problem; Eigenvalue; Laplace operator; elliptic equation; quasi-linear equation; transmiss
版次1
doihttps://doi.org/10.1007/978-3-0346-0477-2
isbn_ebook978-3-0346-0477-2Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains影响因子(影响力)




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains影响因子(影响力)学科排名




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains网络公开度




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains网络公开度学科排名




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains被引频次




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains被引频次学科排名




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains年度引用




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains年度引用学科排名




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains读者反馈




书目名称Transmission Problems for Elliptic Second-Order Equations in Non-Smooth Domains读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:15:45 | 显示全部楼层
第129004主题贴--第2楼 (沙发)
发表于 2025-3-22 00:48:28 | 显示全部楼层
板凳
发表于 2025-3-22 05:07:42 | 显示全部楼层
第4楼
发表于 2025-3-22 11:52:59 | 显示全部楼层
5楼
发表于 2025-3-22 16:23:34 | 显示全部楼层
6楼
发表于 2025-3-22 20:38:02 | 显示全部楼层
7楼
发表于 2025-3-23 00:58:53 | 显示全部楼层
8楼
发表于 2025-3-23 05:01:39 | 显示全部楼层
9楼
发表于 2025-3-23 09:23:35 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 22:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表