找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Transfer Learning for Multiagent Reinforcement Learning Systems; Felipe Leno Silva,Anna Helena Reali Costa Book 2021 Springer Nature Switz

[复制链接]
查看: 9350|回复: 35
发表于 2025-3-21 19:46:45 | 显示全部楼层 |阅读模式
书目名称Transfer Learning for Multiagent Reinforcement Learning Systems
编辑Felipe Leno Silva,Anna Helena Reali Costa
视频video
丛书名称Synthesis Lectures on Artificial Intelligence and Machine Learning
图书封面Titlebook: Transfer Learning for Multiagent Reinforcement Learning Systems;  Felipe Leno Silva,Anna Helena Reali Costa Book 2021 Springer Nature Switz
描述.Learning. to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment...However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning...This book surveys the literature on knowledge reuse in mul
出版日期Book 2021
版次1
doihttps://doi.org/10.1007/978-3-031-01591-5
isbn_softcover978-3-031-00463-6
isbn_ebook978-3-031-01591-5Series ISSN 1939-4608 Series E-ISSN 1939-4616
issn_series 1939-4608
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Transfer Learning for Multiagent Reinforcement Learning Systems影响因子(影响力)




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems影响因子(影响力)学科排名




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems网络公开度




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems网络公开度学科排名




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems被引频次




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems被引频次学科排名




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems年度引用




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems年度引用学科排名




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems读者反馈




书目名称Transfer Learning for Multiagent Reinforcement Learning Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:40:23 | 显示全部楼层
第128191主题贴--第2楼 (沙发)
发表于 2025-3-22 02:07:57 | 显示全部楼层
板凳
发表于 2025-3-22 05:33:26 | 显示全部楼层
第4楼
发表于 2025-3-22 11:44:17 | 显示全部楼层
5楼
发表于 2025-3-22 16:01:27 | 显示全部楼层
6楼
发表于 2025-3-22 17:57:11 | 显示全部楼层
7楼
发表于 2025-3-23 00:57:02 | 显示全部楼层
8楼
发表于 2025-3-23 02:11:19 | 显示全部楼层
9楼
发表于 2025-3-23 09:29:25 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 21:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表