找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization; Dan Butnariu,Alfredo N. Iusem Book 2000 Sprin

[复制链接]
查看: 12196|回复: 35
发表于 2025-3-21 19:21:51 | 显示全部楼层 |阅读模式
书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization
编辑Dan Butnariu,Alfredo N. Iusem
视频videohttp://file.papertrans.cn/927/926660/926660.mp4
丛书名称Applied Optimization
图书封面Titlebook: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization;  Dan Butnariu,Alfredo N. Iusem Book 2000 Sprin
描述The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea­ surable families of operators and optimization methods in infinite dimen­ sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional
出版日期Book 2000
关键词Banach Space; Convexity; Dimension; Integral equation; Optimal control; algorithms; control; functional ana
版次1
doihttps://doi.org/10.1007/978-94-011-4066-9
isbn_softcover978-94-010-5788-2
isbn_ebook978-94-011-4066-9Series ISSN 1384-6485
issn_series 1384-6485
copyrightSpringer Science+Business Media Dordrecht 2000
The information of publication is updating

书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization影响因子(影响力)




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization影响因子(影响力)学科排名




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization网络公开度




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization网络公开度学科排名




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization被引频次




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization被引频次学科排名




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization年度引用




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization年度引用学科排名




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization读者反馈




书目名称Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:36:13 | 显示全部楼层
第126660主题贴--第2楼 (沙发)
发表于 2025-3-22 01:00:22 | 显示全部楼层
板凳
发表于 2025-3-22 07:38:38 | 显示全部楼层
第4楼
发表于 2025-3-22 09:55:13 | 显示全部楼层
5楼
发表于 2025-3-22 15:13:33 | 显示全部楼层
6楼
发表于 2025-3-22 20:57:54 | 显示全部楼层
7楼
发表于 2025-3-23 01:08:27 | 显示全部楼层
8楼
发表于 2025-3-23 03:34:26 | 显示全部楼层
9楼
发表于 2025-3-23 07:51:17 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 09:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表