找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Ricci Flow in Riemannian Geometry; A Complete Proof of Ben Andrews,Christopher Hopper Book 2011 Springer-Verlag Berlin Heidelberg 2011

[复制链接]
查看: 17928|回复: 35
发表于 2025-3-21 16:03:51 | 显示全部楼层 |阅读模式
书目名称The Ricci Flow in Riemannian Geometry
副标题A Complete Proof of
编辑Ben Andrews,Christopher Hopper
视频video
概述A self contained presentation of the proof of the differentiable sphere theorem.A presentation of the geometry of vector bundles in a form suitable for geometric PDE.A discussion of the history of the
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: The Ricci Flow in Riemannian Geometry; A Complete Proof of  Ben Andrews,Christopher Hopper Book 2011 Springer-Verlag Berlin Heidelberg 2011
描述This book focuses on Hamilton‘s Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman‘s noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.
出版日期Book 2011
关键词35-XX, 53-XX, 58-XX; Ricci flow; Riemannian geometry; Sphere theorem; partial differential equations
版次1
doihttps://doi.org/10.1007/978-3-642-16286-2
isbn_softcover978-3-642-16285-5
isbn_ebook978-3-642-16286-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2011
The information of publication is updating

书目名称The Ricci Flow in Riemannian Geometry影响因子(影响力)




书目名称The Ricci Flow in Riemannian Geometry影响因子(影响力)学科排名




书目名称The Ricci Flow in Riemannian Geometry网络公开度




书目名称The Ricci Flow in Riemannian Geometry网络公开度学科排名




书目名称The Ricci Flow in Riemannian Geometry被引频次




书目名称The Ricci Flow in Riemannian Geometry被引频次学科排名




书目名称The Ricci Flow in Riemannian Geometry年度引用




书目名称The Ricci Flow in Riemannian Geometry年度引用学科排名




书目名称The Ricci Flow in Riemannian Geometry读者反馈




书目名称The Ricci Flow in Riemannian Geometry读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:20:25 | 显示全部楼层
Book 2011 existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman‘s noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable
发表于 2025-3-22 04:17:22 | 显示全部楼层
0075-8434 uitable for geometric PDE.A discussion of the history of theThis book focuses on Hamilton‘s Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perel
发表于 2025-3-22 06:23:01 | 显示全部楼层
978-3-642-16285-5Springer-Verlag Berlin Heidelberg 2011
发表于 2025-3-22 09:41:36 | 显示全部楼层
发表于 2025-3-22 14:32:12 | 显示全部楼层
Ben Andrews,Christopher HopperA self contained presentation of the proof of the differentiable sphere theorem.A presentation of the geometry of vector bundles in a form suitable for geometric PDE.A discussion of the history of the
发表于 2025-3-22 18:01:59 | 显示全部楼层
Book 2011 existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman‘s noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.
发表于 2025-3-22 21:34:55 | 显示全部楼层
Lecture Notes in Mathematicshttp://image.papertrans.cn/t/image/918623.jpg
发表于 2025-3-23 01:33:58 | 显示全部楼层
https://doi.org/10.1007/978-3-642-16286-235-XX, 53-XX, 58-XX; Ricci flow; Riemannian geometry; Sphere theorem; partial differential equations
发表于 2025-3-23 07:08:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 16:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表