找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Pullback Equation for Differential Forms; Gyula Csató,Bernard Dacorogna,Olivier Kneuss Book 2012 Springer Science+Business Media, LLC

[复制链接]
查看: 25924|回复: 35
发表于 2025-3-21 18:35:18 | 显示全部楼层 |阅读模式
书目名称The Pullback Equation for Differential Forms
编辑Gyula Csató,Bernard Dacorogna,Olivier Kneuss
视频video
概述The only book to systematically explore the equivalence of differential forms.Rigorously presents Hodge decomposition and several versions of the Poincaré lemma.Includes a very rare, extended study of
丛书名称Progress in Nonlinear Differential Equations and Their Applications
图书封面Titlebook: The Pullback Equation for Differential Forms;  Gyula Csató,Bernard Dacorogna,Olivier Kneuss Book 2012 Springer Science+Business Media, LLC
描述.An important question in geometry and analysis is to know when two .k.-forms .f .and g are equivalent through a change of variables. The problem is therefore to find a map .φ .so that it satisfies the pullback equation: .φ.*.(.g.) = .f... .In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases .k .= 2 and .k .= .n., but much less when 3 ≤ .k .≤ .n.–1. The present monograph provides the first comprehensive study of the equation.. .The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case .k .= .n., and then the case 1≤ .k .≤ .n.–1 with special attention on the case .k .= 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in
出版日期Book 2012
关键词Hodge decomposition; Hölder spaces; Poincaré lemma; equivalence of differential forms; global Darboux th
版次1
doihttps://doi.org/10.1007/978-0-8176-8313-9
isbn_ebook978-0-8176-8313-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightSpringer Science+Business Media, LLC 2012
The information of publication is updating

书目名称The Pullback Equation for Differential Forms影响因子(影响力)




书目名称The Pullback Equation for Differential Forms影响因子(影响力)学科排名




书目名称The Pullback Equation for Differential Forms网络公开度




书目名称The Pullback Equation for Differential Forms网络公开度学科排名




书目名称The Pullback Equation for Differential Forms被引频次




书目名称The Pullback Equation for Differential Forms被引频次学科排名




书目名称The Pullback Equation for Differential Forms年度引用




书目名称The Pullback Equation for Differential Forms年度引用学科排名




书目名称The Pullback Equation for Differential Forms读者反馈




书目名称The Pullback Equation for Differential Forms读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:19:01 | 显示全部楼层
发表于 2025-3-22 02:12:58 | 显示全部楼层
发表于 2025-3-22 07:04:41 | 显示全部楼层
1421-1750 f the Poincaré lemma.Includes a very rare, extended study of.An important question in geometry and analysis is to know when two .k.-forms .f .and g are equivalent through a change of variables. The problem is therefore to find a map .φ .so that it satisfies the pullback equation: .φ.*.(.g.) = .f... 
发表于 2025-3-22 09:26:46 | 显示全部楼层
Gyula Csató,Bernard Dacorogna,Olivier KneussThe only book to systematically explore the equivalence of differential forms.Rigorously presents Hodge decomposition and several versions of the Poincaré lemma.Includes a very rare, extended study of
发表于 2025-3-22 14:37:46 | 显示全部楼层
Progress in Nonlinear Differential Equations and Their Applicationshttp://image.papertrans.cn/t/image/918006.jpg
发表于 2025-3-22 20:14:42 | 显示全部楼层
发表于 2025-3-22 21:41:43 | 显示全部楼层
发表于 2025-3-23 01:41:54 | 显示全部楼层
The Pullback Equation for Differential Forms978-0-8176-8313-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
发表于 2025-3-23 08:04:23 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 17:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表