找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Non-Euclidean, Hyperbolic Plane; Its Structure and Co Paul Kelly,Gordon Matthews Textbook 1981 Springer-Verlag New York, Inc. 1981 Hype

[复制链接]
查看: 7128|回复: 35
发表于 2025-3-21 19:55:27 | 显示全部楼层 |阅读模式
书目名称The Non-Euclidean, Hyperbolic Plane
副标题Its Structure and Co
编辑Paul Kelly,Gordon Matthews
视频video
丛书名称Universitext
图书封面Titlebook: The Non-Euclidean, Hyperbolic Plane; Its Structure and Co Paul Kelly,Gordon Matthews Textbook 1981 Springer-Verlag New York, Inc. 1981 Hype
描述The discovery of hyperbolic geometry, and the subsequent proof that this geometry is just as logical as Euclid‘s, had a profound in­ fluence on man‘s understanding of mathematics and the relation of mathematical geometry to the physical world. It is now possible, due in large part to axioms devised by George Birkhoff, to give an accurate, elementary development of hyperbolic plane geometry. Also, using the Poincare model and inversive geometry, the equiconsistency of hyperbolic plane geometry and euclidean plane geometry can be proved without the use of any advanced mathematics. These two facts provided both the motivation and the two central themes of the present work. Basic hyperbolic plane geometry, and the proof of its equal footing with euclidean plane geometry, is presented here in terms acces­ sible to anyone with a good background in high school mathematics. The development, however, is especially directed to college students who may become secondary teachers. For that reason, the treatment is de­ signed to emphasize those aspects of hyperbolic plane geometry which contribute to the skills, knowledge, and insights needed to teach eucli­ dean geometry with some mastery.
出版日期Textbook 1981
关键词Hyperbolische Geometrie; Plane; congruence; construction; function; geometry; hyperbolic geometry; knowledg
版次1
doihttps://doi.org/10.1007/978-1-4613-8125-9
isbn_softcover978-0-387-90552-5
isbn_ebook978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York, Inc. 1981
The information of publication is updating

书目名称The Non-Euclidean, Hyperbolic Plane影响因子(影响力)




书目名称The Non-Euclidean, Hyperbolic Plane影响因子(影响力)学科排名




书目名称The Non-Euclidean, Hyperbolic Plane网络公开度




书目名称The Non-Euclidean, Hyperbolic Plane网络公开度学科排名




书目名称The Non-Euclidean, Hyperbolic Plane被引频次




书目名称The Non-Euclidean, Hyperbolic Plane被引频次学科排名




书目名称The Non-Euclidean, Hyperbolic Plane年度引用




书目名称The Non-Euclidean, Hyperbolic Plane年度引用学科排名




书目名称The Non-Euclidean, Hyperbolic Plane读者反馈




书目名称The Non-Euclidean, Hyperbolic Plane读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:39:27 | 显示全部楼层
0172-5939 those aspects of hyperbolic plane geometry which contribute to the skills, knowledge, and insights needed to teach eucli­ dean geometry with some mastery.978-0-387-90552-5978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
发表于 2025-3-22 01:42:53 | 显示全部楼层
发表于 2025-3-22 07:26:51 | 显示全部楼层
The Non-Euclidean, Hyperbolic Plane978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
发表于 2025-3-22 10:57:14 | 显示全部楼层
Universitexthttp://image.papertrans.cn/t/image/915073.jpg
发表于 2025-3-22 13:04:00 | 显示全部楼层
发表于 2025-3-22 17:32:18 | 显示全部楼层
发表于 2025-3-22 23:16:43 | 显示全部楼层
0172-5939 on man‘s understanding of mathematics and the relation of mathematical geometry to the physical world. It is now possible, due in large part to axioms devised by George Birkhoff, to give an accurate, elementary development of hyperbolic plane geometry. Also, using the Poincare model and inversive g
发表于 2025-3-23 04:33:55 | 显示全部楼层
9楼
发表于 2025-3-23 05:34:09 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 06:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表