找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Moment-Weight Inequality and the Hilbert–Mumford Criterion; GIT from the Differe Valentina Georgoulas,Joel W. Robbin,Dietmar Arno S Boo

[复制链接]
查看: 15118|回复: 35
发表于 2025-3-21 19:06:48 | 显示全部楼层 |阅读模式
书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion
副标题GIT from the Differe
编辑Valentina Georgoulas,Joel W. Robbin,Dietmar Arno S
视频video
概述Provides the first complete and thorough treatment of GIT from a differential geometric viewpoint.Treats Hamiltonian group actions on general, not necessarily projective, compact Kähler manifolds.Pres
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: The Moment-Weight Inequality and the Hilbert–Mumford Criterion; GIT from the Differe Valentina Georgoulas,Joel W. Robbin,Dietmar Arno S Boo
描述This book provides an introduction to geometric invariant theory from a differential geometric viewpoint.  It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad variety of examples illustrate the theory, and five appendices cover essential topics that go beyond the basic concepts of differential geometry. The comprehensive bibliography will be a valuable resource for researchers..The book is addressed to graduate students and researchers interested in geometric invariant theory and related subjects.  It will be easily accessible to readers with a basic understanding of differential geometry and does not require any knowledge of algebraic geometry. .
出版日期Book 2021
关键词Symplectic Geometry; Kähler Manifold; Hamiltonian Group Action; Moment Map; Mumford Weights; Kempf-Ness F
版次1
doihttps://doi.org/10.1007/978-3-030-89300-2
isbn_softcover978-3-030-89299-9
isbn_ebook978-3-030-89300-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion影响因子(影响力)




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion影响因子(影响力)学科排名




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion网络公开度




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion网络公开度学科排名




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion被引频次




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion被引频次学科排名




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion年度引用




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion年度引用学科排名




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion读者反馈




书目名称The Moment-Weight Inequality and the Hilbert–Mumford Criterion读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:31:18 | 显示全部楼层
发表于 2025-3-22 01:35:39 | 显示全部楼层
The Moment-Weight Inequality and the Hilbert–Mumford CriterionGIT from the Differe
发表于 2025-3-22 05:51:56 | 显示全部楼层
0075-8434 l, not necessarily projective, compact Kähler manifolds.PresThis book provides an introduction to geometric invariant theory from a differential geometric viewpoint.  It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different area
发表于 2025-3-22 10:11:00 | 显示全部楼层
发表于 2025-3-22 14:51:53 | 显示全部楼层
发表于 2025-3-22 19:49:16 | 显示全部楼层
https://doi.org/10.1007/978-3-030-89300-2Symplectic Geometry; Kähler Manifold; Hamiltonian Group Action; Moment Map; Mumford Weights; Kempf-Ness F
发表于 2025-3-22 21:54:20 | 显示全部楼层
发表于 2025-3-23 01:44:51 | 显示全部楼层
发表于 2025-3-23 05:56:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 12:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表