找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Local Langlands Conjecture for GL(2); Colin J. Bushnell,Guy Henniart Book 2006 Springer-Verlag Berlin Heidelberg 2006 Local Langlands

[复制链接]
查看: 26465|回复: 35
发表于 2025-3-21 19:18:34 | 显示全部楼层 |阅读模式
书目名称The Local Langlands Conjecture for GL(2)
编辑Colin J. Bushnell,Guy Henniart
视频video
概述Contributes an unprededented text to the so-called "Langlands theory".An ambitious research program of already 40 years.Masterly exposition by authors who have contributed significantly to the Langlan
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: The Local Langlands Conjecture for GL(2);  Colin J. Bushnell,Guy Henniart Book 2006 Springer-Verlag Berlin Heidelberg 2006 Local Langlands
描述.If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates the existence of a canonical bijection between such objects and n-dimensional representations of the Weil group, generalizing class field theory...This conjecture has now been proved for all F and n, but the arguments are long and rely on many deep ideas and techniques. This book gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groupsand the structure theory of local fields. It uses only local methods, with no appeal to harmonic analysis on adele groups..
出版日期Book 2006
关键词Local Langlands correspondence; Representation theory; Weil group; finite field; functional equation; smo
版次1
doihttps://doi.org/10.1007/3-540-31511-X
isbn_softcover978-3-642-06853-9
isbn_ebook978-3-540-31511-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

书目名称The Local Langlands Conjecture for GL(2)影响因子(影响力)




书目名称The Local Langlands Conjecture for GL(2)影响因子(影响力)学科排名




书目名称The Local Langlands Conjecture for GL(2)网络公开度




书目名称The Local Langlands Conjecture for GL(2)网络公开度学科排名




书目名称The Local Langlands Conjecture for GL(2)被引频次




书目名称The Local Langlands Conjecture for GL(2)被引频次学科排名




书目名称The Local Langlands Conjecture for GL(2)年度引用




书目名称The Local Langlands Conjecture for GL(2)年度引用学科排名




书目名称The Local Langlands Conjecture for GL(2)读者反馈




书目名称The Local Langlands Conjecture for GL(2)读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:46:59 | 显示全部楼层
发表于 2025-3-22 00:29:52 | 显示全部楼层
https://doi.org/10.1007/3-540-31511-XLocal Langlands correspondence; Representation theory; Weil group; finite field; functional equation; smo
发表于 2025-3-22 05:38:58 | 显示全部楼层
发表于 2025-3-22 10:31:25 | 显示全部楼层
发表于 2025-3-22 14:24:48 | 显示全部楼层
0072-7830 by authors who have contributed significantly to the Langlan.If F is a non-Archimedean local field, local class field theory can be viewed as giving a canonical bijection between the characters of the multiplicative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive int
发表于 2025-3-22 17:03:52 | 显示全部楼层
Book 2006ative group GL(1,F) of F and the characters of the Weil group of F. If n is a positive integer, the n-dimensional analogue of a character of the multiplicative group of F is an irreducible smooth representation of the general linear group GL(n,F). The local Langlands Conjecture for GL(n) postulates
发表于 2025-3-22 23:09:41 | 显示全部楼层
发表于 2025-3-23 02:52:01 | 显示全部楼层
发表于 2025-3-23 08:51:58 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 01:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表