找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Geometry of Walker Manifolds; Miguel Brozos-Vázquez,Eduardo García-Río,Ramón Váz Book 2009 Springer Nature Switzerland AG 2009

[复制链接]
查看: 35518|回复: 44
发表于 2025-3-21 18:19:02 | 显示全部楼层 |阅读模式
书目名称The Geometry of Walker Manifolds
编辑Miguel Brozos-Vázquez,Eduardo García-Río,Ramón Váz
视频video
丛书名称Synthesis Lectures on Mathematics & Statistics
图书封面Titlebook: The Geometry of Walker Manifolds;  Miguel Brozos-Vázquez,Eduardo García-Río,Ramón Váz Book 2009 Springer Nature Switzerland AG 2009
描述This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then
出版日期Book 2009
版次1
doihttps://doi.org/10.1007/978-3-031-02397-2
isbn_softcover978-3-031-01269-3
isbn_ebook978-3-031-02397-2Series ISSN 1938-1743 Series E-ISSN 1938-1751
issn_series 1938-1743
copyrightSpringer Nature Switzerland AG 2009
The information of publication is updating

书目名称The Geometry of Walker Manifolds影响因子(影响力)




书目名称The Geometry of Walker Manifolds影响因子(影响力)学科排名




书目名称The Geometry of Walker Manifolds网络公开度




书目名称The Geometry of Walker Manifolds网络公开度学科排名




书目名称The Geometry of Walker Manifolds被引频次




书目名称The Geometry of Walker Manifolds被引频次学科排名




书目名称The Geometry of Walker Manifolds年度引用




书目名称The Geometry of Walker Manifolds年度引用学科排名




书目名称The Geometry of Walker Manifolds读者反馈




书目名称The Geometry of Walker Manifolds读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:40:07 | 显示全部楼层
发表于 2025-3-22 01:36:05 | 显示全部楼层
发表于 2025-3-22 05:42:54 | 显示全部楼层
Book 2009 (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite diff
发表于 2025-3-22 11:11:50 | 显示全部楼层
1938-1743 manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are
发表于 2025-3-22 14:19:47 | 显示全部楼层
1938-1743 s and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then978-3-031-01269-3978-3-031-02397-2Series ISSN 1938-1743 Series E-ISSN 1938-1751
发表于 2025-3-22 17:53:09 | 显示全部楼层
Book 2009 pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then
发表于 2025-3-22 22:31:00 | 显示全部楼层
发表于 2025-3-23 01:33:00 | 显示全部楼层
发表于 2025-3-23 08:09:15 | 显示全部楼层
Anwendungen der Matrizenrechnung auf die Ausgleichsrechnung,Die Matrizenrechnung ist eine mathematische Disziplin mit der Aufgabe, umfangreiche numerische Probleme übersichtlich darzustellen. Sie ist aber keineswegs nur eine Stenographie der Formeln, sondern ihre Gesetze erlauben auch spezielle Matrizenlösungen, und ihre Sprache ermöglicht eine klare Interpretation komplizierter Rechenvorgänge..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 13:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表