书目名称 | The Geometry of Hamilton and Lagrange Spaces | 编辑 | Radu Miron,Dragos Hrimiuc,Sorin V. Sabau | 视频video | | 丛书名称 | Fundamental Theories of Physics | 图书封面 |  | 描述 | The title of this book is no surprise for people working in the field of Analytical Mechanics. However, the geometric concepts of Lagrange space and Hamilton space are completely new. The geometry of Lagrange spaces, introduced and studied in [76],[96], was ext- sively examined in the last two decades by geometers and physicists from Canada, Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international conferences were devoted to debate this subject, proceedings and monographs were published [10], [18], [112], [113],... A large area of applicability of this geometry is suggested by the connections to Biology, Mechanics, and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries. The concept of Hamilton space, introduced in [105], [101] was intensively studied in [63], [66], [97],... and it has been successful, as a geometric theory of the Ham- tonian function the fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and - miltonspaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagr | 出版日期 | Book 2002 | 关键词 | differential geometry; manifold; optimal control; transformation | 版次 | 1 | doi | https://doi.org/10.1007/0-306-47135-3 | isbn_softcover | 978-1-4020-0352-3 | isbn_ebook | 978-0-306-47135-3Series ISSN 0168-1222 Series E-ISSN 2365-6425 | issn_series | 0168-1222 | copyright | Springer Science+Business Media B.V. 2002 |
The information of publication is updating
|
|