找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Geometric Hopf Invariant and Surgery Theory; Michael Crabb,Andrew Ranicki Book 2017 Springer International Publishing AG 2017 MSC (201

[复制链接]
查看: 40120|回复: 41
发表于 2025-3-21 19:48:38 | 显示全部楼层 |阅读模式
书目名称The Geometric Hopf Invariant and Surgery Theory
编辑Michael Crabb,Andrew Ranicki
视频video
概述Provides the homotopy theoretic foundations for surgery theory.Includes a self-contained account of the Hopf invariant in terms of Z_2-equivariant homotopy.Covers applications of the Hopf invariant to
丛书名称Springer Monographs in Mathematics
图书封面Titlebook: The Geometric Hopf Invariant and Surgery Theory;  Michael Crabb,Andrew Ranicki Book 2017 Springer International Publishing AG 2017 MSC (201
描述.Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds...Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists..Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, withmany results old and new. .
出版日期Book 2017
关键词MSC (2010): 55Q25, 57R42; geometric Hopf invariant; manifolds; doube points of maps; double point theore
版次1
doihttps://doi.org/10.1007/978-3-319-71306-9
isbn_softcover978-3-319-89061-6
isbn_ebook978-3-319-71306-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称The Geometric Hopf Invariant and Surgery Theory影响因子(影响力)




书目名称The Geometric Hopf Invariant and Surgery Theory影响因子(影响力)学科排名




书目名称The Geometric Hopf Invariant and Surgery Theory网络公开度




书目名称The Geometric Hopf Invariant and Surgery Theory网络公开度学科排名




书目名称The Geometric Hopf Invariant and Surgery Theory被引频次




书目名称The Geometric Hopf Invariant and Surgery Theory被引频次学科排名




书目名称The Geometric Hopf Invariant and Surgery Theory年度引用




书目名称The Geometric Hopf Invariant and Surgery Theory年度引用学科排名




书目名称The Geometric Hopf Invariant and Surgery Theory读者反馈




书目名称The Geometric Hopf Invariant and Surgery Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:47:18 | 显示全部楼层
1439-7382 ariant homotopy.Covers applications of the Hopf invariant to.Written by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds...Presenting classical ideas in a modern framework, the authors carefully highlight how thei
发表于 2025-3-22 02:07:59 | 显示全部楼层
Springer Monographs in Mathematicshttp://image.papertrans.cn/t/image/910515.jpg
发表于 2025-3-22 06:36:18 | 显示全部楼层
发表于 2025-3-22 10:32:03 | 显示全部楼层
978-3-319-89061-6Springer International Publishing AG 2017
发表于 2025-3-22 15:02:33 | 显示全部楼层
The Geometric Hopf Invariant and Surgery Theory978-3-319-71306-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
发表于 2025-3-22 18:01:09 | 显示全部楼层
Michael Crabb,Andrew RanickiProvides the homotopy theoretic foundations for surgery theory.Includes a self-contained account of the Hopf invariant in terms of Z_2-equivariant homotopy.Covers applications of the Hopf invariant to
发表于 2025-3-22 23:28:56 | 显示全部楼层
发表于 2025-3-23 04:33:02 | 显示全部楼层
发表于 2025-3-23 07:20:43 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 02:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表