找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: The Cauchy-Riemann Complex; Integral Formulae an Ingo Lieb,Joachim Michel Book 2002 Springer Fachmedien Wiesbaden 2002 Applications.Bochner

[复制链接]
查看: 26808|回复: 35
发表于 2025-3-21 17:57:16 | 显示全部楼层 |阅读模式
书目名称The Cauchy-Riemann Complex
副标题Integral Formulae an
编辑Ingo Lieb,Joachim Michel
视频video
概述Advanced Methods of Complex Analysis Applied to Classical and New Problems
丛书名称Aspects of Mathematics
图书封面Titlebook: The Cauchy-Riemann Complex; Integral Formulae an Ingo Lieb,Joachim Michel Book 2002 Springer Fachmedien Wiesbaden 2002 Applications.Bochner
描述This book presents complex analysis of several variables from the point of view of the Cauchy-Riemann equations and integral representations. A more detailed description of our methods and main results can be found in the introduction. Here we only make some remarks on our aims and on the required background knowledge. Integral representation methods serve a twofold purpose: 1° they yield regularity results not easily obtained by other methods and 2°, along the way, they lead to a fairly simple development of parts of the classical theory of several complex variables. We try to reach both aims. Thus, the first three to four chapters, if complemented by an elementary chapter on holomorphic functions, can be used by a lecturer as an introductory course to com­ plex analysis. They contain standard applications of the Bochner-Martinelli-Koppelman integral representation, a complete presentation of Cauchy-Fantappie forms giving also the numerical constants of the theory, and a direct study of the Cauchy-Riemann com­ plex on strictly pseudoconvex domains leading, among other things, to a rather elementary solution of Levi‘s problem in complex number space en. Chapter IV carries the theor
出版日期Book 2002
关键词Applications; Bochner-Martinelli formula; Hodge theory; Komplexe Analysis; Manifold; Neumann problem; calc
版次1
doihttps://doi.org/10.1007/978-3-322-91608-2
isbn_softcover978-3-322-91610-5
isbn_ebook978-3-322-91608-2Series ISSN 0179-2156
issn_series 0179-2156
copyrightSpringer Fachmedien Wiesbaden 2002
The information of publication is updating

书目名称The Cauchy-Riemann Complex影响因子(影响力)




书目名称The Cauchy-Riemann Complex影响因子(影响力)学科排名




书目名称The Cauchy-Riemann Complex网络公开度




书目名称The Cauchy-Riemann Complex网络公开度学科排名




书目名称The Cauchy-Riemann Complex被引频次




书目名称The Cauchy-Riemann Complex被引频次学科排名




书目名称The Cauchy-Riemann Complex年度引用




书目名称The Cauchy-Riemann Complex年度引用学科排名




书目名称The Cauchy-Riemann Complex读者反馈




书目名称The Cauchy-Riemann Complex读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:43:31 | 显示全部楼层
第105766主题贴--第2楼 (沙发)
发表于 2025-3-22 01:06:17 | 显示全部楼层
板凳
发表于 2025-3-22 08:27:19 | 显示全部楼层
第4楼
发表于 2025-3-22 12:46:55 | 显示全部楼层
5楼
发表于 2025-3-22 16:20:46 | 显示全部楼层
6楼
发表于 2025-3-22 17:23:04 | 显示全部楼层
7楼
发表于 2025-3-23 00:25:25 | 显示全部楼层
8楼
发表于 2025-3-23 02:10:46 | 显示全部楼层
9楼
发表于 2025-3-23 07:16:09 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 03:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表