找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Seminaire de Probabilites XXIII; Jacques Azéma,Marc Yor,Paul André Meyer Conference proceedings 1989 Springer-Verlag GmbH Germany, part of

[复制链接]
楼主: Hemochromatosis
发表于 2025-3-23 12:04:06 | 显示全部楼层
发表于 2025-3-23 17:41:06 | 显示全部楼层
https://doi.org/10.1007/BFb0083955Branching process; Brownian excursion; Brownian motion; Markov process; Martingale; Minlos‘ theorem; calcu
发表于 2025-3-23 21:51:05 | 显示全部楼层
发表于 2025-3-23 22:52:20 | 显示全部楼层
Seminaire de Probabilites XXIII978-3-540-46176-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-24 03:22:35 | 显示全部楼层
Conference proceedings 1989 new volume of the Séminaire de Probabilités develops the following themes: - chaos representation for some new kinds of martingales, - quantum probability, - branching aspects on Brownian excursions, - Brownian motion on a set of rays.
发表于 2025-3-24 09:53:33 | 显示全部楼层
发表于 2025-3-24 13:36:51 | 显示全部楼层
Philippe Bianeompact and general cases.Motivates a deeper understanding of.This textbook introduces spectral theory for bounded linear operators by focusing on (i) the spectral theory and functional calculus for normal operators acting on Hilbert spaces; (ii) the Riesz-Dunford functional calculus for Banach-space
发表于 2025-3-24 16:48:49 | 显示全部楼层
发表于 2025-3-24 21:50:05 | 显示全部楼层
Comportement asymptotique de certaines fonctionnelles additives de plusieurs mouvements browniens,re f is an integrable function on IR.. The critical cases are d = 2k−1 and d = 2k. We obtain results of the first order and of the second order (corresponding to ., which generalize classical results of Kallianpur-Robbins, Papanicolaou-Stroock-Varadhan, and Kasahara-Kotani, for k = 1, as well as rec
发表于 2025-3-25 02:55:40 | 显示全部楼层
0075-8434 sses, this new volume of the Séminaire de Probabilités develops the following themes: - chaos representation for some new kinds of martingales, - quantum probability, - branching aspects on Brownian excursions, - Brownian motion on a set of rays.978-3-540-51191-5978-3-540-46176-0Series ISSN 0075-843
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 06:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表