找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Séminaire de Probabilités XLV; Catherine Donati-Martin,Antoine Lejay,Alain Rouaul Book 2013 Springer International Publishing Switzerland

[复制链接]
楼主: GALL
发表于 2025-3-26 23:21:26 | 显示全部楼层
https://doi.org/10.1007/978-3-319-00321-460-XX, 60JXX, 60J60, 60J10, 60J65, 60J55, 46L54; Malliavin Calculus; combinatorial optimization; random
发表于 2025-3-27 02:08:45 | 显示全部楼层
发表于 2025-3-27 07:41:21 | 显示全部楼层
发表于 2025-3-27 11:23:16 | 显示全部楼层
Malliavin Calculus and Self Normalized SumsWe study the self-normalized sums of independent random variables from the perspective of the Malliavin calculus. We give the chaotic expansion for them and we prove a Berry–Esséen bound with respect to several distances.
发表于 2025-3-27 15:24:32 | 显示全部楼层
发表于 2025-3-27 18:33:37 | 显示全部楼层
Book 2013Malliavin calculus. The Séminaire also occasionally publishes a series of contributions on a unifying subject; in this spirit, selected participants to the September 2011 Conference on Stochastic Filtrations, held in Strasbourg and organized by Michel Émery, have also contributed to the present volu
发表于 2025-3-27 22:08:22 | 显示全部楼层
发表于 2025-3-28 05:27:38 | 显示全部楼层
发表于 2025-3-28 07:29:42 | 显示全部楼层
Characterising Ocone Local Martingales with Reflections in { − ., .}, then . is close to a local martingale in the following sense: | .[..] | ≤ . + . for every stopping time . in the canonical filtration of . such that the stopped process .. is uniformly bounded.
发表于 2025-3-28 11:46:53 | 显示全部楼层
Fluctuations of the Traces of Complex-Valued Random Matricesimit theorem for real random matrices using a probabilistic approach. The main contribution of this paper is to use the same probabilistic approach to generalize the central limit theorem to complex random matrices.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 04:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表