找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symplectic Integration of Stochastic Hamiltonian Systems; Jialin Hong,Liying Sun Book 2022 The Editor(s) (if applicable) and The Author(s)

[复制链接]
查看: 30417|回复: 35
发表于 2025-3-21 18:21:14 | 显示全部楼层 |阅读模式
书目名称Symplectic Integration of Stochastic Hamiltonian Systems
编辑Jialin Hong,Liying Sun
视频video
概述Gives an introduction to symplectic structure and stochastic variational principle for stochastic Hamiltonian systems.Provides symplectic and conformal symplectic methods and ergodic methods via stoch
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Symplectic Integration of Stochastic Hamiltonian Systems;  Jialin Hong,Liying Sun Book 2022 The Editor(s) (if applicable) and The Author(s)
描述.This book provides an accessible overview concerning the stochastic numerical methods inheriting long-time dynamical behaviours of finite and infinite-dimensional stochastic Hamiltonian systems. The long-time dynamical behaviours under study involve symplectic structure, invariants, ergodicity and invariant measure. The emphasis is placed on the systematic construction and the probabilistic superiority of stochastic symplectic methods, which preserve the geometric structure of the stochastic flow of stochastic Hamiltonian systems..The problems considered in this book are related to several fascinating research hotspots: numerical analysis, stochastic analysis, ergodic theory, stochastic ordinary and partial differential equations, and rough path theory. This book will appeal to researchers who are interested in these topics..
出版日期Book 2022
关键词symplectic integration; stochastic Hamiltonian system; rough Hamiltonian system; stochastic variational
版次1
doihttps://doi.org/10.1007/978-981-19-7670-4
isbn_softcover978-981-19-7669-8
isbn_ebook978-981-19-7670-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Symplectic Integration of Stochastic Hamiltonian Systems影响因子(影响力)




书目名称Symplectic Integration of Stochastic Hamiltonian Systems影响因子(影响力)学科排名




书目名称Symplectic Integration of Stochastic Hamiltonian Systems网络公开度




书目名称Symplectic Integration of Stochastic Hamiltonian Systems网络公开度学科排名




书目名称Symplectic Integration of Stochastic Hamiltonian Systems被引频次




书目名称Symplectic Integration of Stochastic Hamiltonian Systems被引频次学科排名




书目名称Symplectic Integration of Stochastic Hamiltonian Systems年度引用




书目名称Symplectic Integration of Stochastic Hamiltonian Systems年度引用学科排名




书目名称Symplectic Integration of Stochastic Hamiltonian Systems读者反馈




书目名称Symplectic Integration of Stochastic Hamiltonian Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:59:48 | 显示全部楼层
发表于 2025-3-22 03:53:23 | 显示全部楼层
发表于 2025-3-22 05:42:29 | 显示全部楼层
发表于 2025-3-22 09:59:06 | 显示全部楼层
Infinite-Dimensional Stochastic Hamiltonian Systems,mplectic discretizations of the stochastic linear Schrödinger equation can approximate the large deviations rate function of the observable, which provides a method of approximating large deviations rate function from the viewpoint of numerical discretization.
发表于 2025-3-22 15:30:12 | 显示全部楼层
Stochastic Modified Equations and Applications,llows that a symplectic method can be approximated by a perturbed Hamiltonian system. A natural question is whether such theory could be extended to the stochastic differential equation and in which sense. This is an important and subtle question, since, unlike the deterministic case, there exist va
发表于 2025-3-22 20:18:49 | 显示全部楼层
Infinite-Dimensional Stochastic Hamiltonian Systems,uid mechanics, etc. As in the finite-dimensional case, one of inherent canonical properties of infinite-dimensional stochastic Hamiltonian systems is that black the phase flow preserves the infinite-dimensional stochastic symplectic structure. In this chapter, we will investigate this geometric stru
发表于 2025-3-22 23:46:57 | 显示全部楼层
发表于 2025-3-23 03:19:47 | 显示全部楼层
Symplectic Integration of Stochastic Hamiltonian Systems
发表于 2025-3-23 08:17:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 17:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表