找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symplectic Geometry, Groupoids, and Integrable Systems; Séminaire Sud Rhodan Pierre Dazord,Alan Weinstein Conference proceedings 1991 Sprin

[复制链接]
查看: 42244|回复: 61
发表于 2025-3-21 19:51:07 | 显示全部楼层 |阅读模式
书目名称Symplectic Geometry, Groupoids, and Integrable Systems
副标题Séminaire Sud Rhodan
编辑Pierre Dazord,Alan Weinstein
视频video
丛书名称Mathematical Sciences Research Institute Publications
图书封面Titlebook: Symplectic Geometry, Groupoids, and Integrable Systems; Séminaire Sud Rhodan Pierre Dazord,Alan Weinstein Conference proceedings 1991 Sprin
出版日期Conference proceedings 1991
关键词Invariant; Lie; Morphism; algebra; geometry; manifold; symplectic geometry; theorem; variable
版次1
doihttps://doi.org/10.1007/978-1-4613-9719-9
isbn_softcover978-1-4613-9721-2
isbn_ebook978-1-4613-9719-9Series ISSN 0940-4740
issn_series 0940-4740
copyrightSpringer-Verlag New York, Inc. 1991
The information of publication is updating

书目名称Symplectic Geometry, Groupoids, and Integrable Systems影响因子(影响力)




书目名称Symplectic Geometry, Groupoids, and Integrable Systems影响因子(影响力)学科排名




书目名称Symplectic Geometry, Groupoids, and Integrable Systems网络公开度




书目名称Symplectic Geometry, Groupoids, and Integrable Systems网络公开度学科排名




书目名称Symplectic Geometry, Groupoids, and Integrable Systems被引频次




书目名称Symplectic Geometry, Groupoids, and Integrable Systems被引频次学科排名




书目名称Symplectic Geometry, Groupoids, and Integrable Systems年度引用




书目名称Symplectic Geometry, Groupoids, and Integrable Systems年度引用学科排名




书目名称Symplectic Geometry, Groupoids, and Integrable Systems读者反馈




书目名称Symplectic Geometry, Groupoids, and Integrable Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:23:48 | 显示全部楼层
Symplectic Geometry, Groupoids, and Integrable Systems978-1-4613-9719-9Series ISSN 0940-4740
发表于 2025-3-22 01:52:50 | 显示全部楼层
发表于 2025-3-22 06:29:21 | 显示全部楼层
发表于 2025-3-22 12:07:34 | 显示全部楼层
,Sur Quelques Questions de Géométrie Symplectique,This paper summarizes a talk that I gave at the Mathematical Science Research Institute (Berkeley) in June 1989. I consider .-homogeneous symplectic manifolds (.) where . is a solvable Lie group. When the symplectic action . × . → . is “regular” and “closed” I sketch the proof of two main results:
发表于 2025-3-22 14:21:43 | 显示全部楼层
,La Première Classe de Chern Comme Obstruction à la Quantification Asymptotique,Notre travail trouve son origine dans un article de Karašev et Maslov sur la quantification d’une variété symplectique générale [.]. Cet article pose de nombreux problèmes et contient plusieurs points obscurs, que nous clarifions, ce qui nous permet de répondre positivement à certaines conjectures.
发表于 2025-3-22 18:15:29 | 显示全部楼层
发表于 2025-3-22 22:37:25 | 显示全部楼层
On the Diameter of the Symplectomorphism Group of the Ball,It is shown that the diameter of the symplectomorphism group of the ball in ℝ. is infinite.
发表于 2025-3-23 02:20:06 | 显示全部楼层
A Symplectic Analogue of the Mostow-Palais Theorem,We show that given a Hamiltonian action of a compact and connected Lie group . on a symplectic manifold (.) of finite type, there exists a linear symplectic action of . on some .. equipped with its standard symplectic structure such that (.) can be realized as a reduction of this .. with the induced action of ..
发表于 2025-3-23 09:05:07 | 显示全部楼层
A Non-Linear Hadamard Theorem,Using Gromov theory of pseudo-holomorphic curves, we derive a pseudo-holomorphic version of the classical result of Hadamard: a holomorphic function with bounded real part is constant. It is a pleasure to thank Gilbert Hector for providing a much simpler proof of Proposition 1, Michel N’Guiffo Boyom and the referee for valuable remarks.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 05:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表