找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Symplectic Geometric Algorithms for Hamiltonian Systems; Kang Feng,Mengzhao Qin Book 2010 Springer-Verlag Berlin Heidelberg 2010 Contact s

[复制链接]
楼主: 胃口
发表于 2025-3-30 08:42:32 | 显示全部楼层
Composition Scheme,rder schemes by “composing” a method, and this constructing process can be continued to obtain arbitrary even order schemes. The composing method presented here can be used to in both non-symplectic and symplectic schemes.
发表于 2025-3-30 13:21:47 | 显示全部楼层
KAM Theorem of Symplectic Algorithms,odic motions in the phase spaces. In this chapter, we study problems as to whether and to what extent symplectic algorithms can simulate qualitatively and approximate quantitatively the periodic and quasi-periodic phase curves of integrable Hamiltonian systems.
发表于 2025-3-30 20:17:01 | 显示全部楼层
发表于 2025-3-31 00:42:55 | 显示全部楼层
发表于 2025-3-31 01:38:21 | 显示全部楼层
发表于 2025-3-31 09:01:50 | 显示全部楼层
Lee-Variational Integrator,nal integrators that preserve discrete symplectic 2-form have been obtained [., but variational integrators obtained in this way fix the time steps and consequently, they are not energy-preserving in general.
发表于 2025-3-31 12:33:56 | 显示全部楼层
computational mathematics.A must for the computational mathe."Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the g
发表于 2025-3-31 16:18:03 | 显示全部楼层
Book 2010computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum
发表于 2025-3-31 18:53:00 | 显示全部楼层
http://image.papertrans.cn/t/image/884002.jpg
发表于 2025-3-31 22:58:02 | 显示全部楼层
https://doi.org/10.1007/978-3-642-01777-3Contact systems; Generating function; Lie– Poisson systems; Symplectic geometry; Theoretical physics; ZST
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 00:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表